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Abstract

Primary visual cortex (V1) contains overlaid feature maps for orientation (OR), motion direction se-
lectivity (DR), and ocular dominance (OD). Neurons in these maps are connected laterally in patchy,
long-range patterns that follow the feature preferences. Using the LISSOM model, we show for the first
time how realistic laterally connected joint OR/OD/DR maps can self-organize from Hebbian learning
of moving natural images. The model predicts that lateral connections will link neurons of either eye
preference and with similar DR and OR preferences. These results suggest that a single self-organizing
system may underlie the development of spatiotemporal feature preferences and lateral connectivity.
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1 Introduction

Most simple cells in the primary visual cortex (V1) in mammals are selective for the direction
and orientation of a moving stimulus, and respond to inputs at corresponding locations in each
eye. Recent measurement techniques have made it possible to plot the neurons’ full spatiotem-
poral receptive fields, which include specific excitatory (ON) and inhibitory (OFF) subregions
that vary over time [5]. The functional properties of these cells form a mosaic across V1, with
patches of nearby cells preferring the left or right eye (or both), and similar directions and ori-
entations [3, 6, 9].

In addition to their afferent input from the LGN, neurons in these maps are connected intra-
cortically through specific long-range lateral connections. The lateral connections have been
found to link cells with similar orientation preferences [4], which can allow the connections to
suppress redundancy in the input and improve the cells’ ability to detect changes in a stimulus
[7]. However, the role of these connections in the development and adult function of directional
selectivity is not yet clear.

Several computational models have demonstrated that directional selectivity and interleaved
orientation (OR) and direction selectivity (DR) maps can develop through activity-dependent
self-organization [8, 11]. However, these simulations have only modeled afferent connection
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V1Fig. 1. LISSOM OR/OD/DR
model. Each V1 unit receives
inputs from RFs on sixteen LGN
sheets modeling different response
types (ON- or OFF-center) and
different connection lags (3, 2, 1,
or 0). LGN RFs for one V1 unit are
shown as solid circles; V1 units also
have have lateral excitatory (small
dotted circle) and lateral inhibitory
(large dashed circle) connections
to their neighbors. Each LGN unit
receives input from either the left
or the right eye; sample RFs are
shown for two LGN units for each eye. Moving input patterns are drawn on the retinal sheets in four
discrete timesteps, like frames of a movie. Matching patterns are presented in each eye, with the relative
brightness of each eye chosen randomly. At the first timestep, the ON and OFF LGN units with time lag
3 compute their activity. At each subsequent timestep, the input pattern is moved slightly and LGN units
with lags 2, 1, and 0 compute their activity in turn. Once all LGN units have been activated, initial V1
activity is computed from the LGN responses, and the activity then spreads laterally within V1.

learning, and have treated lateral connections as fixed. Also, although ocular dominance (OD)
has been modeled in conjunction with orientation, joint OR/OD/DR models have not yet been
published. Including OD is potentially crucial, because it is known to interact with the orienta-
tion map [3]. Finally, most prior models are based on abstract input patterns, and it is difficult
to extend such models to process realistic images.

In prior work with the LISSOM self-organizing model (Laterally Interconnected Synergetically
Self-Organizing Map), we have demonstrated how a Hebbian learning process can develop ori-
entation and direction maps, with patterned lateral connections between them [2]. We have also
shown separately how individual maps, including those for ocular dominance, can form from
natural images or spontaneous neural activity [1, 7]. The model suggests that self-organized
maps and lateral connections function in adult visual perception to segment and bind coher-
ent objects and reduce redundancy in the input, and that visual illusions and aftereffects arise
through this process [7]. In this paper we extend the combined OR/DR model to include two
eyes, to model ocular dominance, and to use natural image stimuli as inputs. Together, these
results show that activity-dependent self-organization can explain the development of much of
the map-level organization of the primary visual cortex.

2 The LISSOM model

The model architecture is shown in figure 1, and will be briefly reviewed below (see [1] or [7]
for more details). The model consists of a hierarchy of two-dimensional sheets of neural units
modeling different areas of the visual system: two sheets of retinal photoreceptors representing
the left and right eyes, several paired sheets of ON-center/OFF-surround and OFF-center/ON-
surround LGN units, and a sheet of cortical units (“neurons”) representing V1. The ON/OFF
units are also called LGN units for simplicity, although they represent the entire pathway be-
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tween the retinal photoreceptors and V1, including the retinal ganglion cells and connection
pathways. Because the focus is on the two-dimensional organization of V1, each cortical neu-
ron corresponds to a vertical column of cells through the six anatomical layers of the cortex.

Compared to simpler OR-only LISSOM networks, the model introduced in this paper includes
two eyes (to model OD) and multiple LGN sheets with different time-delayed copies of previous
input patterns. The time delays model the “lagged” cells recently found in cat LGN that respond
to retinal inputs only after a fixed delay. The delay time in these lagged cells varies over a
continuous range up to hundreds of milliseconds [12]. We will show below that V1 neurons
can use these timing differences to develop spatiotemporal receptive fields. Similarly, neurons
will develop eye preferences based on differences in the patterns presented to each eye. These
extensions allow the model V1 to develop simultaneous maps for orientation, ocular dominance,
and motion direction. The extensions result in sixteen LGN sheets in total, one ON-center and
one OFF-center sheet at each of four different lags for each eye, compared to two (one ON and
one OFF) sheets in the OR-only LISSOM model.

The training patterns consisted of randomly chosen patches of natural images, moving in ran-
dom directions. A sample input is drawn in the photoreceptor sheets of figure 1. The strength
of the image in each eye was chosen randomly, but the total strength between the eyes was kept
constant. For each image presentation, the activity level of each LGN unit is calculated from
the activity level its receptive fields. Specifically, each LGN unit(i, j) with lag t computes its
responseηij as a scalar product of a fixed Difference of Gaussians weight vector and the activity
in its receptive fields on a photoreceptor sheet at timet:

ηij = σ
(∑

ρ γρ
∑

ab Xρabwij,ρab

)
, (1)

whereρ iterates over all RFs of this unit (for LGN units in this simulation, a single RF on either
the left or right retina),σ is a piecewise linear sigmoid activation function,γρ is a constant
scaling factor,Xρab is the activation of input unit(a, b) on sheetρ at timestept, andwij,ρab is the
corresponding weight value. Each V1 neuron computes its initial response like an LGN unit,
except thatρ iterates over all of the sixteen ON or OFF LGN sheets for which the V1 unit has
RFs. After the initial V1 response, the LGN activity remains constant while V1 activity settles
through short-range excitatory and long-range inhibitory lateral interaction:

ηij(t) = σ
(∑

ρ γρ
∑

ab Xρab(t− 1)wij,ρab

)
, (2)

whereρ identifies either an RF on the LGN sheet, or the lateral excitatory or inhibitory weights
to V1, γρ is a constant scaling factor for eachρ (negative for inhibitory lateral weights), and
Xρab(t−1) is the activation of input unit(a, b) during the previous settling step. The V1 activity
pattern starts out diffuse, but within a few iterations of equation 2, converges into a small number
of stable focused patches of activity, or activity bubbles.

After the activity has settled, the connection weights of each RF of every V1 neuron are modified
according to a normalized Hebb rule. For a given V1 unit(i, j) and connection to any unit(a, b)
in a specific RFρ, the new connection weight is:

w′ij,ρab =
wij,ρab + αρηijXρab∑

ruv [wij,ruv + αrηijXruv]
, (3)

whereηij stands for the activity of neuron(i, j) in the final activity bubble,wij,ρab is the con-
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Fig. 2.Self-organized spatiotemporal receptive field.
These images show the OFF LGN weights subtracted
from the ON for each lag, for a typical V1 neuron.
Light shades indicate a net ON subregion of the retina,
i.e. an area that will excite the neuron if it is brighter
than its surround. Dark shades indicate OFF regions,
and medium gray indicates no preference. For this neu-
ron, the most effective stimulus would be a binocular
vertical bar or grating moving to the right. More specif-
ically, the neuron will be highly active at timet if a bright bar is aligned with the ON region of both eyes
in (a) at timet−3, with the ON region of (b) at timet−2, and so on until at the present timet it is aligned
with the ON region of (d). Visual cortex neurons in animals have similar spatiotemporal properties [5].

nection weight from the previous fixation,α is the learning rate for each type of connection,
andXρab is the presynaptic activity. For afferent connections,r in the denominator iterates over
all afferent receptive fields (and(u, v) over all units in each such RF), whereas the weights
for lateral connections are normalized over only one type, either excitatory or inhibitory. The
larger the product of the pre- and post-synaptic activityηijXρab, the larger the weight change.
At long distances, few neurons have correlated activity and most long-range connections even-
tually become weak. The weakest connections are eliminated periodically, resulting in patchy
lateral connectivity similar to that observed in the visual cortex.

For the experiments reported in this paper, eight36×36 ON-center and eight36×36 OFF-center
unit sheets received input from a54 × 54 photoreceptor sheet. Initially, the afferent weights of
the142× 142 V1 neurons were random, and the lateral weights had a smooth circular Gaussian
profile. The learning parameters are the same as those for our previous OR-only model [7].

3 Results

Figure 2 shows the self-organized afferent weights for a representative neuron after 20,000
image fixations. Nearly all neurons developed spatiotemporal receptive fields selective for ori-
entation, and most were also selective for direction and either the right or left eye. These RFs
are similar to those found experimentally in the cortex [5]. As in V1 cells, the model RFs can
only rarely be expressed as a function of a fixed spatial RF and a time-dependent scaling factor.
The RFs are thusspace-time inseparable[5]. Also as in the cortex, the orientation and direction
preferences of a neuron were generally perpendicular.

Figure 3 shows the self-organized global DR, OD, and OR maps, which are also similar to those
found in animals [3, 6, 9]. For instance, a patch of neurons highly selective for one orientation
and direction of motion will often have an adjacent or contiguous patch selective for the same
orientation, but the opposite direction. Ocular dominance stripe boundaries also tend to inter-
sect orientation patch boundaries at right angles, as in macaque monkeys [3]. Long-range lateral
connections within the map follow this global organization, connecting neurons similar in both
orientation and direction preference, but to both eyes (figure 3). These connection patterns rep-
resent the correlations between units over the course of self-organization. These connections
constitute predictions of the model, and match preliminary findings reported for ferrets [10]. As
will be discussed below, the self-organized lateral weight patterns are likely to play a crucial
role in adult visual perception as well as development.
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(a) DR+lateral (b) OD+lateral (c) OR+lateral

Fig. 3.Maps and lateral connections.These plots show the separate maps for (a) motion direction, (b)
ocular dominance, and (c) orientation that emerged through self-organization. The DR and OR maps use
the color keys shown, while the OD map shows left eye preferences as dark areas and right eye pref-
erences as light. The OD gray level indicates how strong the preference is; fully black or fully white
neurons would be completely monocular. On each map, the self-organized long-range lateral inhibitory
connections for the neuron in figure 2 are outlined in white. This neuron, colored in green in (a) and blue
in (c), and outlined with a small white square in the center of the plot, prefers nearly vertical stimuli mov-
ing to the right and slightly downwards. Its connections are patchy and link to similar DR preferences
(other green neurons in the DR map) and OR preferences (other blue and cyan neurons in the OR map).
The neuron is binocular, and connects to neurons selective for both eyes, although it has stronger con-
nections to one eye. Overall, the long-range connections target similar orientation preferences, direction
preferences, and both eyes, and avoid orthogonal orientations and opposite directions. Color versions of
these plots are available at www.nn.cs.utexas.edu/keyword?bednar:cns05.

4 Discussion and Future Work

The results demonstrate that a single Hebbian learning algorithm can explain how topographic
maps, spatiotemporal receptive fields, and lateral connections synergetically self-organize from
moving stimuli. The model predicts that long-range lateral connections in V1 will be found to
connect neurons with similar direction preference as well as orientation preference, as suggested
in preliminary reports [10]. In future work we will simulate larger cortical areas and lateral
connection radii, to determine whether the lateral connections extend further along the preferred
orientation, as found in tree shrew [4]. We will also validate the model maps against other
experimental results from specific species and study how the orientation, direction preference,
and lateral connectivity interact with other stimulus dimensions, such as spatial frequency.

The preferences for each of the features represented in the model can develop through a variety
of mechanisms in addition to those presented above. For instance, realistic LISSOM orientation
maps can develop from spontaneous neural activity before eye opening, without requiring natu-
ral images [1, 7]. Eye preferences can also develop from differences in object position between
the two eyes, apart from the intensity differences modeled here. Similarly, motion preferences
can arise from any source of different delays in neural activity propagation, in addition to the
LGN lags modeled here. Thus the map development process is highly robust, suggesting that
many types and sources of neural activity may contribute to map development in animals.
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Future work will investigate how the OR/OD/DR map and its connections operate in the adult.
The self-organized connection patterns should allow moving objects to be bound together and
segmented from other objects, as previously shown for static patterns [7]. Short-term direction-
specific adaptation of the lateral connections should replicate the motion aftereffect, also called
the waterfall illusion, as we found for the tilt aftereffect [7]. Simulating both eyes should allow
the interocular transfer of such effects to be tested in the model. This work will help unify ex-
planations of development and adult visual function into a coherent theory of the visual cortex.

5 Conclusion

Hebbian learning of moving, oriented patterns in a self-organizing model can explain how ori-
entation selectivity, direction selectivity, eye preference, and lateral connectivity develop in V1.
The model provides specific predictions for the role of the lateral connections in the develop-
ment and function of the direction map. This study and future work will help strengthen our
understanding of the visual cortex as a continuously adaptive, self-organizing system.
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