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Abstract

Studies of orientation maps in primary visual cortex (V1) suggest that lateral connections
mediate competition and cooperation between orientation-selective units, but their role in mo-
tion perception has not been established. Using a self-organizing model of V1 with moving
oriented patterns, we show that (1) a/erent weights of each neuron organize into Gabor-like
spatiotemporal receptive �elds with ON and OFF lobes, (2) these receptive �elds form realistic
joint direction and orientation maps, and (3) lateral connections develop between patches with
similar orientation and direction preferences. These results suggest that a single self-organizing
system may underlie the development of orientation selectivity, direction selectivity, and lateral
connectivity.
c© 2003 Published by Elsevier Science B.V.
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1. Introduction

Most simple cells in the primary visual cortex (V1) are selective for the direction
and orientation of a moving stimulus. Recent measurement techniques have made it
possible to plot the neurons’ full spatiotemporal receptive �elds, which include speci�c
excitatory (ON) and inhibitory (OFF) subregions that vary over time [5]. The functional
properties of these cells form a mosaic across V1, with patches of nearby neurons
preferring similar directions and orientations [13].
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In addition to their a/erent input from the LGN, the neurons in these maps are
connected intracortically through speci�c long-range lateral connections [7]. The lateral
connections have been found to link cells with similar orientation preferences [3,7],
which can allow the connections to suppress redundancy in the input and improve
the cells’ ability to detect changes in a stimulus [2,8,12]. However, the role of these
connections in the development and adult function of directional selectivity is not yet
clear.

Several computational models have shown that directional selectivity and interleaved
orientation and direction maps can develop through activity-dependent self-organization
[6,10,14]. However, these simulations have only modeled a/erent connection learn-
ing, and have treated lateral connections as �xed. In prior work with the LISSOM
self-organizing model (Laterally Interconnected Synergetically Self-Organizing Map),
we have shown how a Hebbian learning process can develop topographic maps, ocular
dominance, orientation, and size preference columns, and patterned lateral connections
between them [8,11,12]. We have also shown that these self-organized maps and lat-
eral connections can function in adult visual perception to segment and bind coherent
objects and reduce redundancy in the input, and that visual illusions and aftere/ects
arise through this process [2,4,12]. In this paper we extend the model to develop mo-
tion and direction preferences through the self-organization of spatiotemporal receptive
�elds. Together, these results show that activity-dependent self-organization can explain
many of the anatomical and functional characteristics of the cortex.

2. HLISSOM model

These simulations are based on the HLISSOM model [1], which extends LISSOM
to include the ON and OFF channels of the LGN. The main idea is that directional
selectivity can develop from LGN cells whose output arrives at the cortex after a delay.
In the LGN, many cells �re soon after a retinal stimulus. However, other lagged cells
have recently been found in cat LGN that respond only after a �xed delay [9]. The delay
time in these lagged cells varies over a continuous range up to hundreds of milliseconds
[15]. We will show below that V1 neurons can use these timing di/erences to develop
spatiotemporal receptive �elds.

The architecture for the HLISSOM model is shown in Fig. 1, and will be brieKy
reviewed below. (For more details, see [2].) The model consists of a hierarchy of
two-dimensional sheets of neural units modeling di/erent areas of the visual system:
a sheet of retinal photoreceptors, several paired sheets of ON-center and OFF-center
LGN units (with a di/erent lag for each pair), and a sheet of cortical units (“neurons”)
representing V1. Because the focus is on the two-dimensional organization of V1, each
neuron corresponds to a vertical column of cells through the six anatomical layers of
the cortex.

The model simulates behaviour at three di/erent timescales, denoted by variables
f; t, and s in the equations below. Variable f represents a single �xation out of a
sequence of thousands presented to the model. At each �xation, motion in the image
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Fig. 1. HLISSOM model of orientation and direction selectivity. The model is a hierarchy of sheets of neural
units, modeling the early visual pathway. In this implementation, there are eight sheets of LGN units. The
LGN units receive input from their circular receptive �elds (RFs) on the photoreceptors. Connections to a
sample photoreceptor RF are plotted for two LGN units; all units at the same position in the other six LGN
sheets also receive input from that same RF. Each LGN sheet contains a homogenous group of units, with
either ON- or OFF-center organization and a lag of 0, 1, 2, or 3 timesteps. Similarly, neurons in V1 have
circular RFs on all eight LGN sheets; connections to two of the RFs are shown. V1 neurons also have lateral
excitatory (small dotted circle) and lateral inhibitory (large dashed circle) connections to their neighbors.
Moving input patterns are drawn on the photoreceptor sheet in discrete timesteps, like frames of a movie.
At the �rst timestep, the ON and OFF LGN cells with time lag 3 compute their activity. At each subsequent
timestep, the input pattern is moved slightly and LGN cells with lags 2, 1, and 0 compute their activity
in turn. Once all LGN cells have been activated, initial V1 activity is computed from the LGN responses,
and the activity then spreads laterally within V1. Both a/erent and lateral V1 weights are adapted when the
activity settles.

is simulated at several discrete timesteps t. For a given time t, lateral interactions in
the cortex are computed for several timesteps s.

The input to the model is a series of activity patterns on the sheet of photorecep-
tors, such as two-dimensional oriented Gaussians or grayscale photographic images. A
sample input is drawn in the photoreceptor sheet of Fig. 1. For a given moving input,
the photoreceptor activity is drawn at multiple discrete timesteps. At each such time
step t, the activity levels of all LGN cells with lag t are calculated. Each LGN cell
(i; j) with lag t computes its response �ij as a scalar product of a �xed weight vector
and its receptive �elds on the photoreceptor sheet at time t:

�ij = �


∑

	ab

�	X	abwij;	ab


 ; (1)
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where 	 identi�es the input sheet (the photoreceptors, in this case), � is a piecewise
linear sigmoid activation function, �	 is a constant scaling factor, X	ab is the activation
of input unit (a; b) on sheet 	 at timestep t, and wij;	ab is the corresponding weight
value. Each V1 neuron computes its initial response like that of an LGN cell, ex-
cept that 	 identi�es one of the ON or OFF LGN sheets. After the initial response,
the V1 activity settles through short-range excitatory and long-range inhibitory lateral
interaction:

�ij(s) = �


∑

	ab

�	X	ab(s− 1)wij;	ab


 ; (2)

where 	 identi�es either an LGN sheet or the lateral excitatory or inhibitory weights to
V1, �	 is a constant scaling factor for each 	 (negative for inhibitory lateral weights),
and X	ab(s−1) is the activation of input unit (a; b) during the previous settling step. The
V1 activity pattern starts out di/use, but within a few iterations of Eq. (2), converges
into a small number of stable focused patches of activity, or activity bubbles. After the
activity has settled, the connection weights of each V1 neuron are modi�ed. All V1
weights adapt according to the Hebb rule, normalized so that the sum of the weights
from each sheet 	 is constant for each neuron (i; j):

wij;	ab(f + 1) =
wij;	ab(f) + �	�ijX	ab∑
ab [wij;	ab(f) + �	�ijX	ab]

; (3)

where �ij stands for the activity of neuron (i; j) in the �nal activity bubble, wij;	ab(f)
is the connection weight from the previous �xation, � is the learning rate for each type
of connection, and X	ab is the presynaptic activity. The larger the product of the pre-
and post-synaptic activity �ijX	ab, the larger the weight change. At long distances, few
neurons have correlated activity and therefore most long-range connections eventually
become weak. The weakest connections are eliminated periodically, resulting in patchy
lateral connectivity similar to that observed in the visual cortex.

For the experiments reported in this paper, four 36×36 ON-center and four 36×36
OFF-center cell sheets received input from a 54×54 photoreceptor sheet. Each ON/OFF
cell had a �xed Di/erence of Gaussians receptive �eld (RF) within the photoreceptor
array. Initially, the a/erent weights of the 142×142 V1 neurons were random, and the
lateral weights had a smooth circular Gaussian pro�le. The learning parameters were
the same as in our earlier V1 orientation model [2], scaled for this cortex size using
the model scaling methodology presented in [1].

3. Results

Fig. 2 shows the self-organized a/erent weights for a representative neuron after
20,000 image �xations. Nearly all neurons developed spatiotemporal receptive �elds
selective for orientation, and most were also selective for direction. These RFs are
similar to those found experimentally in the cortex [5]. As in V1 cells, the model RFs
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Fig. 2. Self-organized spatiotemporal receptive �eld. These images show the a/erent weights for a typical
neuron, plotted on the retina. As a visualization of the preferred stimulus of this neuron, the OFF weights
were subtracted from the ON for each lag. In the resulting plots, white indicates a net ON subregion of
the retina, i.e. an area that will excite the neuron if it is brighter than its surround. Black indicates OFF
subregions. Together, the a/erent weight plots show that the most e/ective stimulus for this neuron would
be a horizontal bar or grating moving upwards. More speci�cally, this neuron will be highly active at time
t if there was a bright bar aligned with the ON subregion in (a) at time t− 3, a bright bar aligned with the
ON subregion of (b) at time t − 2, and so on until the present time t, where the bar will be aligned with
the ON subregion of (d). Visual cortex neurons in animals have similar spatiotemporal properties [5].

can only rarely be expressed as a function of a �xed spatial RF and a time-dependent
scaling factor. The RFs are thus space-time inseparable [5]. Also as in the cortex, the
orientation and direction preferences of a neuron were generally perpendicular.

Fig. 3 shows that the self-organized global orientation and direction maps are also
similar to those found in animals [13]. For instance, a patch of neurons highly selective
for one orientation and direction of motion will often have an adjacent or contiguous
patch selective for the same orientation, but the opposite direction. Long-range lateral
connections within the map follow this global organization, connecting neurons similar
in both orientation and direction preference. These connection patterns represent the
correlations between units over the course of self-organization. As will be described
below, the self-organized lateral weight patterns are likely to play a crucial role in
adult visual perception as well as development.

4. Discussion and future work

The results demonstrate that a single Hebbian learning algorithm can explain how
topographic maps, spatiotemporal receptive �elds, and lateral connections synergeti-
cally self-organize from moving stimuli. The model predicts that long-range lateral
connections in V1 will be found to connect neurons with similar direction preference
as well as orientation preference. In future work we will validate the model against
experimental results from particular species and study how the orientation, direction
preference, and lateral connectivity interact with other stimulus dimensions, such as
spatial frequency preference.

Other studies will investigate how the direction map and its connections operate
in the adult. The self-organized connection patterns should allow moving objects to
be bound together and segmented from other objects, as previously shown for static
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Fig. 3. Self-organized orientation and direction map. Through self-organization, a smoothly varying map of
orientation and direction preferences emerged. Each of the 142 × 142 neurons is colored with its preferred
orientation, according to the key at right. The orientation map is similar to those found experimentally in
animals, containing features such as pinwheels, linear zones, and fractures [13]. The direction preferences
for every third neuron are plotted as white arrows overlaid on the orientation map. The size of each arrow
is proportional to the neuron’s directional selectivity, and the arrow points in the neuron’s preferred motion
direction. The preferred orientation is generally perpendicular to the preferred direction. As an example,
the neuron from Fig. 2 is marked with a black square in the lower center of the plot. The neurons in
that region of the map prefer horizontal stimuli moving upwards. Neurons in the patch just below the
marked neuron also prefer nearly horizontal lines, but moving in the opposite direction. Other paired patches
can be seen elsewhere in the map, as found experimentally [13]. The black outline shows the extent of
the self-organized lateral weights for the marked neuron. The short-range connections target neurons with a
variety of preferences, but long-range connections (a) target similar orientations and direction preferences, (b)
extend along the orientation axis (horizontal), and (c) avoid orthogonal orientations and opposite directions.
Animations of this plot are available at www.cs.utexas.edu/∼nn.

patterns [4]. Short-term direction-speci�c adaptation of the lateral connections should
replicate the motion aftere/ect, also called the waterfall illusion, as we found for the
tilt aftere/ect [2]. This work will help unify explanations of development and adult
visual function into a coherent theory of the visual cortex.
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5. Conclusion

Hebbian learning of moving, oriented patterns in a self-organizing model can ex-
plain how orientation selectivity, direction selectivity, and lateral connectivity develop
synergetically in V1. The model provides speci�c predictions for the role of the lateral
connections in the development and function of the direction map. This study and fu-
ture work will help strengthen our understanding of the visual cortex as a continuously
adaptive, self-organizing system.
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