
Modeling large cortical networks with
growing self-organizing maps

James A. Bednar, Amol Kelkar, and Risto Miikkulainen

Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712
{jbednar,amol,risto }@cs.utexas.edu

Abstract

Self-organizing computational models with specific intracortical connections can explain
many features of visual cortex. However, due to their computation and memory require-
ments, it is difficult to use such detailed models to study large-scale object segmentation and
recognition. This paper describes GLISSOM, a method for scaling a small RF-LISSOM
model network into a larger one during self-organization, dramatically reducing time and
memory needs while obtaining equivalent results. With GLISSOM it should be possible to
simulate all of human V1 at the single-column level using existing workstations. The scal-
ing equations GLISSOM uses also allow comparison of biological maps and parameters
between individuals and species with different brain region sizes.
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1 Introduction

Self-organizing computational models have shown that input-driven development
can explain much of the topographic organization of the visual cortex, such as
retinotopy and orientation preference, as well as many functional properties, such
as short-range contour segmentation and binding (see [12] for review). However,
other important phenomena have remained out of reach because they require too
much computation time and memory to simulate. These phenomena, such as long-
range visual contour and object segmentation and integration, are thought to arise
out of the specific lateral interactions between large numbers of neurons over a
wide spatial area [5]. Simulating such behavior requires an enormous number of
specific, modifiable connections, which is computationally infeasible using exist-
ing models. In this paper we present a general scaling approach called GLISSOM
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Fig. 1. Architecture of the RF-LISSOM network. A small RF-LISSOM network and
retina are shown, along with connections to a single neuron (shown as a large circle).
The input is an oriented Gaussian activity pattern on the retinal ganglion cells (shown by
grayscale coding); the LGN is bypassed for simplicity. The afferent connections form a
local anatomical receptive field (RF) on the simulated retina. Neighboring neurons have
different but highly overlapping RFs. Each neuron computes an initial response as a scalar
(dot) product of its receptive field and its afferent weight vector, i.e. a sum of the product
of each weight with its associated receptor. The responses then repeatedly propagate within
the cortex through the lateral connections and evolve into activity “bubbles”. After the ac-
tivity stabilizes, weights of the active neurons are adapted using a normalized Hebbian rule.

that allows much larger networks to be simulated faithfully in a given time and
amount of memory, thereby making larger-scale simulations possible.

2 Growing LISSOM (GLISSOM)

GLISSOM is based on the RF-LISSOM computational model (Receptive-Field
Laterally Interconnected Synergetically Self-Organizing Map; figure 1) [10, 11].
RF-LISSOM focuses on the two-dimensional topographic organization of the cor-
tex, modeling a cortical area as anN × N sheet of neurons and the retina as an
R × R sheet of ganglion cells. Neurons receive afferent connections from broad
patches of radiusrA on the retina, and receive lateral excitatory and inhibitory
connections from nearby and more distant neurons in the cortex (radiirE andrI,
respectively). The connection weights are initially random or isotropic, and are
subsequently organized through an unsupervised Hebbian learning process using
visual input. Weak connections are eliminated periodically, resulting in patchy lat-
eral connectivity similar to that observed in the visual cortex. Due to the large
number of connections involved in a realistic map, this self-organization process is
very computation and memory intensive.

GLISSOM’s computation and memory savings are achieved by starting simulations
with a small network and smoothly scaling up the network as it self-organizes.
This approach is effective without sacrificing accuracy because: (1) self-organizing
models tend to have peak computational and memory requirements at the begin-
ning of training [7], and (2) self-organization tends to proceed in a global-to-local
fashion, with large-scale order established first, followed by more detailed local
self-organization [4]. Thus small maps, which are much quicker to simulate and

2



take less memory, can be used to establish global order, with larger maps used only
to achieve more detailed structure.

GLISSOM relies on a set of parameter scaling equations developed for RF-LISSOM
networks, and on an interpolation procedure developed to convert an existing net-
work into a larger one [7]. The scaling equations and interpolation procedure were
derived by treating a cortical network as a finite approximation to a continuous map
composed of an infinite number of units [1, 9]. Under such an assumption, networks
of different sizes represent coarser or denser approximations to the continuous map,
and any given approximation can be transformed into another by (conceptually) re-
constructing the continuous map and then resampling it. Such resampling is equiva-
lent to the smooth bitmap scaling done by computer graphics programs, and extends
a similar procedure proposed by Rodriques and Almeida [8] for the more abstract
Self-Organizing Map architecture.

For each GLISSOM scaling step from a cortex of sizeNo into one of sizeN , we
first scale the cortical architecture parameters:

rE = N
No

rEo , αE = rEo
2

rE
2 αEo , rI = N

No
rIo , αI = rIo

2

rI
2 αIo , DI = DIo

rIo
2

rI
2 , (1)

whererE andrI are the lateral excitatory and inhibitory radii,αE andαI are the
lateral connection learning rates, andDI is the connection pruning cutoff level at
a given iteration. These equations specify how scaling should be done to preserve
large-scale structural and functional properties. If used to construct a separate RF-
LISSOM simulation, the scaled parameters would result in a final map similar to
but larger than the original map [7]. The above equations scale only the cortex size,
but in RF-LISSOM the retina size and total area can be scaled similarly [7].

Once the new architecture parameters have been determined, we generate the con-
nection strengths in the new network from the strengths in the original, partially-
organized network. Each connection weight in the new network is calculated as
a normalized proximity-weighted linear combination of the connection strengths
from the corresponding region of the original network (for details see [7]). This
smooth scaling allows neuron density to be increased while keeping the large-scale
structural and functional properties constant, such as the organization of the ori-
entation preference map. In essence, the large network is grown in place, thereby
minimizing the computational resources required for simulation.

3 Results

The two requirements for GLISSOM’s dynamic scaling are (1) the maps it produces
should be equivalent to those produced by RF-LISSOM, and (2) the computation
time and memory should be significantly reduced. Figures 2 and 3 show that both
of these requirements are met. For example, for the simulations in figure 2 on a
600MHz Pentium III workstation, GLISSOM takes 1.9 hours and 60MB, while
RF-LISSOM requires 5.1 hours and 317MB. Thus GLISSOM is faster by a factor
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(a) RF-LISSOM
Iteration 100

(b) RF-LISSOM
Iteration 20,000

(c) GLISSOM
Iteration 100

(d) GLISSOM
Iteration 20,000

Fig. 2.GLISSOM produces final orientation maps that match those of RF-LISSOM.
Plots (a) and (b) show orientation maps measured for a 144×144 RF-LISSOM network
near the beginning and at the end of self-organization. Plots (c) and (d) show the cor-
responding maps for a GLISSOM network that gradually scaled a 54×54 cortex up to
144×144. Each neuron in each plot is grayscale-coded according to the orientation of its
preferred visual stimulus, with shading varying from black (horizontal) to light gray (ver-
tical). An example neuron is marked with a white square in each plot; the lateral inhibitory
connections of this neuron are outlined in white around it. Most neurons in the early maps
have random, weak orientation preferences, although small patches of orientation-selective
neurons are emerging at similar locations in (a) and (c). The selective patches are driven by
the stream of input patterns (which was identical for both networks), and are insensitive to
the different random initial weight values in each map [7]. After self-organization, the final
maps (b) and (d) are nearly identical, as are the pruned lateral connection patterns within
them. For both final maps, nearby neurons have similar orientation preferences, short-range
lateral connections target neurons of all orientations, and long range connections preferen-
tially target neurons with similar orientations (as found in experimental animals [2]).

of two while using only one-fifth of the memory. At the same time, the resulting
orientation maps are both qualitatively and quantitatively similar (as measured by
e.g. the average difference between corresponding weight values [7].) Importantly,
the relative speedup and the memory savings increases with larger network sizes
(figure 3), which means that GLISSOM makes much larger networks practical.

Based on the connectivity patterns observed in these simulations, the scaling equa-
tions allow us to obtain a rough estimate of how large a simulation would be needed
to approximate the density, area, and connectivity of the biological cortex. The re-
sult of these calculations is that GLISSOM should be able to represent all of hu-
man primary visual cortex (V1) at the single-column level using approximately450
megabytes of RAM, which is within the reach of current desktop workstations [7].
Existing algorithms with specific connections, such as RF-LISSOM, would require
more than135 gigabytes of RAM, necessitating the use of large supercomputers.

4 Discussion

The simulation results show that growing realistic cortical maps during self-orga-
nization can reduce simulation time and memory usage, making the study of large-
scale phenomena tractable. Similar maps are developed in each case, as long as
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Fig. 3.For large networks, GLISSOM uses significantly less memory and time.Sum-
mary of results from fourteen simulations on the same 600MHz Pentium III workstation,
each running either RF-LISSOM (with the fixed sizeN indicated in the x-axis) or GLIS-
SOM (with a starting size ofN = 36 and the finalN indicated in the x-axis). Each point
on each curve represents one run; variance between runs was negligible. (a) RF-LISSOM’s
peak memory requirements increase very quickly asN is increased, while GLISSOM keeps
the peak number low throughout training. (b) The total simulation times for RF-LISSOM
also increase dramatically for larger networks, but because GLISSOM has fewer connec-
tions to process, its computation time increases only modestly for the same range ofN .
Thus, given fixed computational resources, GLISSOM can simulate a much larger network.

the GLISSOM starting size is sufficiently large [7]. Scaling equations similar to
those in section 2 can also be developed for other similar models, and then smooth
interpolation can be used to scale them up during self-organization. Essentially, the
GLISSOM method allows a fixed model to be adapted into one that grows in place,
by adding scaling equations and an interpolation algorithm.

The scaling equations GLISSOM uses also give insight into how the corresponding
quantities may differ between different individuals, between different species, and
during development (cf. [6]). The equations specify how the biophysical correlates
of the model parameters should differ between any two otherwise-similar brains (or
areas thereof) that differ in size. The discrepancy between the actual parameter val-
ues and those predicted by the scaling equations can give insight into the difference
in function and performance of different individuals and species.

Future work can utilize GLISSOM to study larger-scale and more complex phe-
nomena at a detailed level. For instance, the visual tilt illusion is thought to occur
through orientation-specific lateral interactions between spatially-separated stim-
uli [3]. Memory constraints limited the lateral connection length in previous RF-
LISSOM simulations, and thus such long-range interactions could not be studied.
With GLISSOM it should be possible to integrate both the spatial and orientation
aspects of the tilt illusion by self-organizing a network with a large area and the full
range of lateral connectivity found in the cortex.
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5 Conclusion

The GLISSOM method should allow detailed laterally-connected cortical models
like RF-LISSOM to be applied to much more complex, large-scale phenomena.
The scaling method also provides insight into the cortical mechanisms at work in
organisms with brains of widely different sizes. Thus GLISSOM can help explain
brain scaling in nature as well as helping scale up brain simulations.
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