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While evolutionary computation is well suited for automatic discovery in engineer-

ing, it can also be used to gain insight into how humans and organizations could perform

more effectively. Using a real-world problem of innovation search in organizations as the

motivating example, this dissertation formalizes human creative problem solving as com-

petitive multi-agent search. It differs from existing single-agent and team-search problems

in that the agents interact through knowledge of other agents’ searches and through the dy-

namic changes in the search landscape caused by these searches. The main hypothesis is

that evolutionary computation can be used to discover effective strategies for competitive

multi-agent search. This hypothesis is verified in experiments using an abstract domain

based on the NK model, i.e. partially correlated and tunably rugged fitness landscapes,
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and a concrete domain in the form of a social innovation game. In both domains, differ-

ent specialized strategies are evolved for each different competitive environment, and also

strategies that generalize across environments. Strategies evolved in the abstract domain

are more effective and more complex than hand-designed strategies and one based on tra-

ditional tree search. Using a novel spherical visualization of the fitness landscapes of the

abstract domain, insight is gained about how successful strategies work, e.g. by tracking

positive changes in the landscape. In the concrete game domain, human players were mod-

eled using backpropagation, and used as opponents to create environments for evolution.

Evolved strategies scored significantly higher than the human models by using a different

proportion of actions, providing insights into how performance could be improved in social

innovation domains. The work thus provides a possible framework for studying various

human creative activities as competitive multi-agent search in the future.
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Chapter 1

Introduction

Competition is common both in nature and in human societies. Individuals and groups

compete for territory, market share, and resources when they operate in the same domain,

such as technological innovation, scientific discovery, and art and design. For instance,

companies in high-technology industries compete when they are trying to develop the best

products. They utilize various strategies such as exploration of new product ideas, ex-

ploitation of their current products and knowledge, imitating other companies’ products,

and sharing or hiding their knowledge. This problem-solving activity can be seen as a new

kind of search process, one where multiple agents compete in searching for solutions in the

same space. Once this process is formalized, it will be possible to study it systematically,

identifying strategies that work best in different environments. With such knowledge, com-

panies should be able to innovate better, and entire industries may become more productive.

Laying such a groundwork for Competitive Multi-Agent Search (CMAS) is the goal of this

dissertation.
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1.1 Motivation

Single-agent search has been a successful approach to formalizing many types of human

problem solving. For instance, it has been used in searching for solutions in puzzles, game

playing, and planning. However, in the real world, agents often do not search for solutions

in isolation. There are many agents who simultaneously look for solutions in the same

search space, and therefore compete in finding them. They search in a non-stationary en-

vironment because both the knowledge of opponents’ searches and the fitness landscape

itself changes as the search progresses. As a result, agents need to be reactive in order to re-

spond to those changes. This requirement makes both the problem and the solution method

different from standard search; the traditional formalizations of single-agent search do not

adequately describe competitive multi-agent search.

A clear example of such competitive multi-agent search, and the main motiva-

tion for this dissertation, is innovation search, a problem-solving activity where compa-

nies search for new products by recombining and manipulating existing knowledge (Katila,

2002). Unlike in single-agent search, the agents’ behavior is affected by other agents’

search in two ways: knowledge about the solutions that the other agents have found so far,

and the dynamic changes to the search landscape that result from their searches (such as

boosting the value of an emerging area or reducing the value of a crowded area). Neither

of these mechanisms are taken into account in single-agent search, but they are central to

competitive multi-agent search, as will be shown in this dissertation.

Once a proper formalization for competitive multi-agent search has been found, it

will be possible to determine how it can be done well. In terms of innovation search, meth-

ods that would allow companies to find the best ways to innovate in various circumstances

would be beneficial to all companies, as well as to potential users of their products. It would

be useful for them to find the most effective balance of search strategies, such as how much

exploration vs. exploitation to do, and how much and how quickly to share knowledge. For

instance, too much exploration (e.g. looking for completely new product areas) would be
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too time-consuming and costly. On the other hand, too much exploitation (e.g. creating

products that are iterations of the company’s existing products) would make it less likely

for the company to generate innovative technologies (Katila and Chen, 2008). Therefore,

not only would such insights reduce costs of product development, but it would also help

bring more innovative products to market and do so more frequently. Furthermore, fitting

CMAS and such insights to archival data of patents and products in a particular industry

can help make such data more useful for that industry.

Benefits of effective competitive multi-agent search are not limited to companies

searching for products, but apply to many other human creative problem-solving activities.

For example, finding effective ways to balance exploration of new scientific ideas and iter-

ating on earlier discoveries may help researchers be more productive, and the public will

benefit from scientific advancements sooner. Similarly for designers and artists, finding

out how much and how frequently to exchange ideas may be important. Sharing too much

knowledge or doing it too frequently may cause designers and artists to influence each other

too much, which might reduce the diversity of produced ideas. However, keeping all ideas

private would prevent productive collaborations and bouncing off of ideas, which could po-

tentially improve them. Moreover, CMAS could be a useful way to model games where

the goal is to put together a team of players that contribute to the score, such as fantasy

sports games and economic strategy games. Identifying the effects on the score of different

levels of player changes and imitation of other game participants would help create better

artificial agents for such games, improving player experience and perhaps extending them

to training applications. Thus, understanding what makes CMAS effective could be helpful

in several domains of creative problem solving.

1.2 Challenge

Formalizing and optimizing CMAS is challenging for four reasons. First, it is not sufficient

to keep track of just the agent’s own search progress; it is necessary to take into account
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what the other agents are doing as well. For instance, in innovation search, patent filings and

product announcements make such information known to other agents. Therefore, agents’

actions depend on other agents’ actions, making CMAS more complex than other search

settings studied so far.

Second, the fitness landscape in CMAS is dynamic: When many agents converge

in the same region of the fitness landscape, the landscape changes. Such changes take two

forms: boosting, which is an increase in search points’ fitness due to that region becoming

more attractive (e.g. expanding demand in new markets in innovation search), and crowding,

which is a subsequent decrease in the fitness (e.g. saturation of existing markets). Such

dynamic changes mean that the agent must be continuously searching for new solutions.

Third, CMAS environments can vary in several dimensions. They can have varying

sizes of search spaces and densities of agents. Different environments can have sets of

opponents with a wide range of opposite strategies, from those that only exploit the points

they find to those that do only exploration in the search space. It is unlikely that a single

strategy works well in all environments. Instead, it is necessary to characterize different

environments systematically and determining the best strategies for each of them separately.

Fourth, due to all these factors, it is difficult to manually create optimal strategies.

As a result, methods that automatically discover optimal agent strategies for CMAS are

needed. Tackling these challenges, this dissertation presents a formalization of CMAS

and methods to characterize, model, and optimize agent strategies through evolutionary

discovery.

1.3 Approach

The approach taken in this dissertation is to develop a formalization of multiple agents

searching for solutions simultaneously in the same search space, while addressing the chal-

lenges stated in the previous section. First, the formalization for CMAS will allow agents

to make their knowledge (i.e. points they have discovered) known to other agents, through
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a public memory. They will also be able to store their knowledge without disclosing it to

others through a private memory.

Second, the fitness landscape will change when agents visit points. These changes

will be called flocking effects in this dissertation, and both boosting and crowding will be

modeled. Whenever agents visit a point in the search space, the region around that point

will initially interact by a multiplicative flocking factor that is greater than 1.0. After a

while this factor becomes less than 1.0, and the region decreases linearly on subsequent

agent visits.

Third, a standard set of environments will be used as the experimental setup for

comparing different strategies’ performance. The various environments will include those

with large and small search spaces. Opponent agents in the environments will vary in their

use of private and public memory. Moreover, they will be doing either exploitation or

exploration using the best point in that memory as the starting point.

Fourth, in order to determine which strategies work well in specific environments

and as general strategies, they will be encoded as neural networks, and optimized using

NEAT, a popular neuroevolution method (Stanley and Miikkulainen, 2002). They will be

optimized in homogeneous and heterogeneous environments with the different opponents

above. Furthermore, multiple homogeneous environments will be used to evolve general

strategies that can perform well in multiple environments.

Two domains will be used in this dissertation: an abstract domain and a concrete do-

main. In the abstract domain, competing agents will be simulated to search for high-fitness

points on NK fitness landscapes (Kauffman, 1993), which will be modified to incorporate

landscape changes. This domain will allow setting up different environments systemati-

cally, and investigating and understanding the results in detail.

The insights from the abstract domain will then be verified in a concrete human

activity domain. An existing laboratory setting from Wisdom et al. (2013) that matches

CMAS well will be utilized: a social innovation game that has thematic elements of fantasy
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sports leagues. Using gameplay data of human subjects, a model for each subject will be

trained via supervised learning. These human models will then be used as opponents during

evolution of optimal strategies in the concrete domain.

The concrete domain will demonstrate that the CMAS approach works in the real

world; in that sense it is general, and can likely be applied to characterize and optimize

behavior in many other domains of human creative activity.

1.4 Outline

This dissertation is organized into four parts: background (Chapters 1-2), characterization

and optimization of a competitive multi-agent search problem in an abstract domain (Chap-

ters 3-5), in a concrete domain (Chapters 6-8), and discussion and future work (Chapters 9-

10).

Chapter 2 discusses the motivation from the perspective of organizational theory,

reviews single-agent and team-based search methods, agent-based modeling approaches,

and the evolutionary algorithm employed.

Chapter 3 describes the first of the two domains utilized in this dissertation, i.e. a

tunably-rugged NK fitness landscape. The chapter presents a visualization for the fitness

landscape, details the agents of the domain, how they interact and search, and how their

strategies are implemented.

Chapter 4 provides a characterization of the abstract domain via experiments on the

effects of search diversity, choice of search method, exploration focus, environment size,

and opponents’ strategies. Detailed experimental results are provided, specifying what kind

of strategies work in virtual environments.

Chapter 5 presents an encoding for agent strategies to facilitate evolution. It de-

scribes experiments that evolve strategies tailored for specific environments, as well as

strategies that are intended to be more general-purpose. The results demonstrate that evo-

lution can discover customized strategies for specific environments, as well as general ones
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that can work well in multiple environments.

Chapter 6 describes the second of the two domains, i.e. a social innovation game. It

summarizes the results of Wisdom et al. (2013) on that domain, and describes the gameplay

data collected in that study.

Chapter 7 details how that data was interpreted as training data for supervised learn-

ing of a model for each human subject, in the form of a two-tiered neural network. Several

distance objectives are described, which are used to evaluate how close those models are

to the corresponding human subjects. Different modeling approaches are compared us-

ing multiple objectives to measure distance to human subjects. Two-tiered neural network

models are shown to be better in imitation objectives than one-tiered neural network mod-

els, and better in both imitation and score objectives than simpler models. Effects of the

length of training are also investigated, finding that performance in a subset of the objectives

improves with increased training, whereas others get worse.

Chapter 8 utilizes those human subject models as opponents against which to op-

timize strategies in the form of a combined two-tiered neural network. Strategies are suc-

cessfully evolved for specific homogeneous and complex environments, and they perform

better in those environments than strategies evolved in other environments. General strate-

gies are also evolved using multiple homogeneous environments, and they perform better

overall than those evolved in a single environment, but worse than the ones evolved for each

particular environment.

Chapter 9 discusses the similarities and differences between the abstract and con-

crete domains, and presents ideas for future work. These include extending the representa-

tion of agent strategies and the optimization method, applications for human subject models,

theoretical characterization of CMAS, and analysis of real-world archival data.

Chapter 10 summarizes the contributions, and concludes the dissertation.
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Chapter 2

Background and Related Work

This dissertation is motivated by the real-world problem of innovation search in organiza-

tions. The formalization of this problem, CMAS, builds on single-agent and team-search

methods, but extends them with competitive and cooperative dynamic interactions between

agents. It also builds on agent-based modeling, but applies that general approach to doing

innovation search in a landscape that changes dynamically because of agent actions. The

main contribution is to show that evolutionary computation is a good way to discover effec-

tive solution strategies for CMAS. While many different evolutionary approaches could be

used, the particular one tested in this dissertation is based on NeuroEvolution of Augment-

ing Topologies (NEAT; Stanley and Miikkulainen, 2002) as one representative approach.

With NEAT, strategies can be represented naturally with neural networks whose complex-

ity is matched with the task.

2.1 Organizational Theory

Even though the main focus of this dissertation is on characterization and evolutionary

optimization of CMAS strategies, it is useful to review the motivation from the perspective

of a real-world example of CMAS, that of organizational theory in management science.
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The example serves to make the issues and the motivation concrete.

Search (i.e. institutional problem solving) in the organizational theory literature is

typically thought to take place in a knowledge space, conceptualized as a landscape. In in-

novation search, for example, firms generate, recombine, and manipulate knowledge within

a pool of technological possibilities (Levinthal and March, 1981), and such activity can be

tracked, for example, by using patents (e.g. Katila, 2002). Such a search can be represented

in an NK landscape (Section 3.1) where N corresponds to dimensions of knowledge and K

determines how complex the relationships between them are (Katila et al., 2014; Levinthal,

1997; Gavetti and Levinthal, 2000). This work has led to several insights. One is that

firms that search more frequently and further away from their current knowledge bases (i.e.

explore) are more likely to succeed (Greve, 2003a; Katila, 2002). Another is that firms typ-

ically search in exactly the opposite way: too little and too close (i.e. exploit), and therefore

need to find effective strategies to resist such local tendencies (Helfat, 1994).

Despite these insights, the focus of organizational search research has been rela-

tively narrow. Prior efforts typically assessed a firm’s innovation activities only relative

to its own behavior, i.e. as single-agent search. Only recently, researchers have started to

conceptualize search beyond its single-agent roots and to incorporate competition. There

is emerging research on situations in which firms learn from their competitors and on why

such learning is sometimes difficult (Greve and Taylor, 2000; Rivkin, 2000), as well as

research on how competitors interact dynamically (Katila et al., 2008). However, to date

these studies have been conceptual and statistical only; competition has not been integrated

in any formal models of organizational search.

The first contribution of this dissertation is to do so, i.e. to create a formalization

that can be used to study such competitive processes with computational techniques. It

thus contributes to management science, but it also contributes to Artificial Intelligence

(AI), by defining a new and interesting class of search problems relevant to the real world.

Although the motivation comes from the specific example of organizational search, the
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same formalization should be useful in understanding a range of creative problem-solving

properties in human societies, such as scientific discovery, creativity in engineering, and art

and design.

The second, main contribution of this dissertation is then to show that new com-

putational techniques are useful in this new domain. The next section reviews traditional

search techniques in artificial intelligence and evolutionary computation, pointing out why

they are not a good fit with CMAS problems.

2.2 Search Algorithms

Traditionally, research on search algorithms has focused on two types of search methods:

search performed by a single agent and search performed by a team of similar cooperating

agents. Single-agent search methods, such as A* (Hart et al., 1968) and iterative-deepening

A* (IDA*; Korf, 1985), have been used in well-defined search domains, including path

finding and scheduling problems. Such methods are understood well theoretically and guar-

antee optimal solutions to a problem, but they are impractical to utilize if the search space

of the problem is too large.

On the other hand, with team-search methods the individual team members search

for peaks in a fitness landscape in parallel; every point in the search space has a certain

height corresponding to its fitness value, and the knowledge of all agents is collected into

a single pool. These search methods are appropriate in problems that are inherently large

or not well-defined, such as antenna design (Lohn et al., 2004) and robot control (Valsalam

et al., 2007). The theory of these methods is less well developed and they do not usually

guarantee optimal solutions.

Team-search methods are typically inspired by various types of biological and nat-

ural systems, such as evolution (Mitchell, 1996), swarm behavior (Kennedy et al., 2001),

water drop modeling (Hosseini, 2009), and gravitational particle interactions (Rashedi et al.,

2009). For instance, Particle Swarm Optimization (Kennedy et al., 1995) and Ant Colony
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Optimization (Dorigo and Stützle, 2004) are inspired by social swarm behaviors in nature:

They make use of multiple agents that represent solutions to optimization problems.

Competition has been incorporated into single-agent search methods by extending

them to two-player games (Pearl, 1984) and multi-agent adversarial games (Zuckerman and

Felner, 2011). The search for the best move for a player proceeds by first considering all

moves of that player and then a subset of the moves of the opponents, utilizing techniques

such as alpha-beta pruning (Knuth and Moore, 1975; Korf, 1991). However, since such

search methods rely on enumerating all possible moves of at least one player, they are not

practical with a large number of moves.

Competitive elements exist in team search as well. For instance, in evolutionary

search, population members compete to propagate their genes, although the population as

a whole cooperates to produce a single good solution. Inter-population competition has

been incorporated into evolutionary search in a coevolutionary arrangement, where different

populations try to outdo each other in the task (Pollack et al., 1996; Juille and Pollack, 1996;

Werfel et al., 2000; Stanley and Miikkulainen, 2004). However, there is no absolute fitness;

a team is considered successful simply if it does better than the other team. Moreover, the

teams do not alter the fitness landscape and therefore do not influence each other’s search.

Therefore, neither single-agent nor team-based search is a good fit with CMAS

problems. In CMAS, interactions among agents and between the agents and the environ-

ment need to be taken into account explicitly. Agent-based modeling provides a framework

for doing that, as will be described next.

2.3 Agent-Based Modeling

Agent-based modeling has been used extensively in various fields including search and op-

timization in computer science (Dorigo and Stützle, 2004; Kennedy et al., 1995; Knight,

1993), as well as real-world social and economical interactions in political science (Axel-

rod, 1997) and economics (Epstein, 1999; Holland and Miller, 1991). The idea is to model
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each agent explicitly, with the goal that global patterns emerge from this process. The

agent-based approach is therefore an appropriate formalization for competitive multi-agent

search.

In the multi-agent systems literature, there are many examples of domains where

the agents compete to solve problems (Hoen et al., 2005). CMAS can be seen as a special

case of such problems, characterized by four special properties: (1) Competitive multi-

agent search is modeled as search for the same highest peaks in a common landscape.

(2) The agents may not necessarily know about the other agents’ searches, and may or

may not inform them about their own searches. (3) Their search actions have an effect on

the landscape that is visible to all agents. (4) The agents’ search strategies are stochastic,

representing the bounded rationality of real-world agents such as human decision makers

and organizations (March and Simon, 1958).

While some of these properties have been addressed in prior research, together they

define a new and interesting problem class. It shares with prior work the idea of agents and

their interactions as the appropriate level of modeling. However, building on these specific

properties, it may be possible to develop a specific formalization and approach for CMAS

problems that makes it easier to understand and solve such problems. This is the goal of

this dissertation.

The main hypothesis tested is that while it is possible to formulate search strategies

by hand, and adapt traditional single-agent search strategies to CMAS, better strategies can

be discovered automatically by evolutionary optimization. In order to verify this hypothe-

sis, a particular approach is developed using evolution of neural networks with the NEAT

method (Stanley and Miikkulainen, 2002). Representing CMAS strategies as neural net-

works that generate patterns, such as Compositional Pattern Producing Networks (CPPNs;

Stanley, 2007) or Central Pattern Generators (CPGs; Chiel et al., 1999), is a potentially

powerful approach, as will be described in detail in Section 5.1. While such networks could

be evolved through different methods, NEAT has been previously applied to them exten-
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sively, and will therefore be used as the default implementation in this dissertation as well.

2.4 NeuroEvolution of Augmenting Topologies (NEAT)

NeuroEvolution of Augmenting Topologies (NEAT; Stanley and Miikkulainen, 2002) is a

method for evolving neural networks that adjusts both the topology and the weights as part

of the learning process (for other such methods, see Harvey et al., 1997; Hutt and Warwick,

2003; Moriguchi and Honiden, 2012). It is based on three synergetic ideas (for details, see

e.g. Stanley and Miikkulainen, 2002):

First, the initial population of neural networks consists of minimally connected in-

dividuals with no hidden nodes (i.e. nodes other than input and output nodes). The networks

gradually become more complex through mutations that add nodes and connections. Only

those additions to the topology that improve performance are kept, which helps find small

solutions to the problem. Starting with minimal topology also speeds up learning since the

number of connection weights to be optimized during evolution, i.e. the size of the search

space for connection weights, is minimal (Stanley and Miikkulainen, 2002).

Second, crossover between individuals with different topologies is made possible

by keeping an innovation number for each gene in the genome of a neural network. In-

novation numbers are used to match genes that have similar historical origin. They are

an abstraction of homology in biological evolution, which is the mechanism for aligning

similar genes during crossover (Sigal and Alberts, 1972). Keeping these numbers for each

gene circumvents the expensive task of matching topologies of networks for crossover (see

(Stanley and Miikkulainen, 2002) for details on innovation numbers).

The third component of NEAT is that innovation in population members is pro-

tected by separating the population into species depending on similarity. When a structural

mutation alters an individual considerably, the individual may not initially perform as well

as the other population members. If this happens, that individual will not survive even

though this mutation might have led to a better-performing individual after some optimiza-
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tion. Speciation protects such individuals by creating a separate species for networks that

are different from others, allowing them to be optimized within the species first. To pre-

vent the whole population from being reduced to a single species, explicit fitness sharing

(Goldberg and Richardson, 1987) is used. This principle means that the fitness within the

species is shared among its members, dividing the fitness of each individual by the size of

its species, preventing species from becoming too large.

NEAT has been shown to be successful in several open-ended design domains, such

as vehicle control and collision warning (Kohl et al., 2006) and controlling video game

agents (Stanley et al., 2005). Most importantly, it has been particularly effective in evolv-

ing CPPNs, i.e. networks that produce spatial patterns (Stanley, 2007). The approach devel-

oped in Chapters 4 and 5 will make use of this idea in an abstract NK-landscape domain:

Agent strategies will be encoded as discrete 4D and 2D patterns, as will be described in

Section 5.1. On the other hand, Chapters 7 and 8 focus on a concrete domain of a social

innovation game, where it is not as practical to generate and store discrete, pattern-based

strategies. Therefore, CPPNs with fine-grained state inputs will be used to represent agent

strategies in those chapters.

2.5 Conclusion

This chapter provided background on organizational theory in management science, which

was the motivating real-world example of CMAS, and on search algorithms, on which

this dissertation builds, as well as on agent-based modeling, of which CMAS is a special

case. Furthermore, the NEAT method of neuroevolution was summarized; this method will

be used to optimize agent strategies in an abstract domain and a concrete domain in later

chapters. The first of those two domains will be described next.
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Chapter 3

Abstract Domain: NK Model

In CMAS, multiple agents search for the highest peaks in the same landscape simultane-

ously. The agents either share or hide their knowledge about the landscape from other

agents, and their searches change the landscape dynamically. They select search actions

(either exploit locally or explore globally) based on a strategy that is encoded as CPPNs,

and evolved through the NEAT method. This section describes the landscapes, the agent

models, the memory types and search actions they use, how the strategies are represented

and generated from CPPNs, and how multiple agents are simulated.

3.1 Fitness Landscape

A popular way to evaluate search methods is to do it in an abstract NK fitness landscape

(Kauffman, 1993). NK landscapes are N -dimensional hypercubes that assign fitness values

to the points of the space such that the ruggedness of the landscape can be adjusted (using

the K parameter). Such landscapes have been used extensively to model human problem

solving, such as innovation search (Levinthal, 1997; Anderson, 1999; Gavetti and Levinthal,

2000). Compared to alternatives such as game theoretical models, the characteristics of the

environment can be readily incorporated into an NK simulation, a large number of agents
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can be included, and they can be boundedly rational, making it easier to draw relevant

insights (Levinthal, 1997).

The K parameter specifies the level of interaction among the N dimensions and can

take on values between 0 and N − 1. When K is 0, the fitness landscape is single-peaked

and smooth, as in Figure 3.2 (a). One can go from the lowest-fitness point to the single

peak by simply following the fitness gradient (i.e. separately flipping each bit that causes

the fitness to increase). With a small K, the fitness landscape becomes a little rugged,

but highest peaks are concentrated in a specific region. When K is N − 1, the landscape

becomes fully random with many peaks distributed all over the space, as in Figure 3.2 (b).

More specifically, each point in the search space is encoded as a bit string of length

N . The fitness of a point is calculated by taking the average of the fitness contributions of

each bit in the bit string for that point. Each bit’s contribution depends on the value of K+1

bits: that bit and the K bits that interact with that bit. As suggested by Kauffman (1993),

for bit i the interacting bits are the K bits that follow it, i.e., bits i + 1, i + 2, ..., i + K

(mod N ). These K + 1 bit values are used as a key to look up fitness-contribution values

from a table, generated randomly from a uniform distribution. This table has N random

values for each (K +1)-bit key, of which there are 2K+1. Figure 3.1 shows how the fitness

is calculated for an NK fitness landscape with N = 3 and K = 2. In this case, the table

consists of 3× 8 fitness contribution values.

Dynamic fitness landscapes are modeled through flocking. That is, whenever an

agent visits a point, the fitness of that point and those nearby change, depending on the

flocking intensity and flocking radius parameters. The fitness of the area around a point

defined by the flocking radius is multiplied by the flocking intensity. Two types of flocking

are used. With boosting, flocking intensity is greater than 1.0 and the region rises, whereas

with crowding, flocking intensity is less than 1.0 and the region sinks. There is no limit

on the number of times a point can be visited. Therefore, when used in isolation, boosting

and crowding will cause a point’s fitness value to approach 1.0 and 0.0, respectively, with
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N=3, K=2

000
(0.50)

001
(0.63)

011
(0.57)

010
(0.60)

100
(0.43)

101
(0.73)

111
(0.53)

110
(0.67)

Figure 3.1: An example NK fitness landscape, where N = 3 is the number of dimensions
or bits of each point and K = 2 is the number of other dimensions that interact with each
dimension. For example, dimension 2 interacts with dimensions 1 and 3 (i.e. the two bits
that follow it). To obtain the fitness of a point, e.g., 010, the fitness contribution values
for its element values are averaged (i.e. the third row in the table). The arrows on the
hypercube represent the direction of increasing fitness. Also shown on the hypercube are
the peaks in the NK fitness landscape, indicated with shaded circles. The fitness values of
all points constitute the complete fitness landscape. NK landscapes are useful because they
are general and the difficulty (i.e. ruggedness) can be adjusted. Such abstract landscapes
can be used as a platform to study search methods, as will be done in Chapters 3-5 in this
dissertation.
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(a) (b)

Figure 3.2: Rectangular visualization of two NK fitness landscapes with N = 12: (a) a
smooth landscape (where K = 0) and (b) a rugged landscape (where K = 11).

every visit to that point. These changes make it possible to model the dynamics of fitness

landscapes in applications such as innovation search, where boosting corresponds to ex-

panding demand in new markets (such as tablet computers) and crowding to the saturation

of existing markets (such as desktops; Katila et al., 2012).

3.2 Visualizing NK Fitness Landscapes

Although high-dimensional NK landscapes are useful in testing ideas about search and

optimization in complex domains, it is not possible to visualize them accurately, and it is

therefore difficult to develop an intuitive understanding of what happens in such spaces. In

a typical visualization, two dimensions are chosen to be represented accurately along each

axis, and the visualization is repeated for the different combinations of values for the other

dimensions, as seen in Figure 3.2.

The main problem with such a visualization is that the continuity of the space is

lost, i.e. nearby points can end up very far apart on the visualization, disallowing natural

intuitions about space (Figure 3.3 (a)). Another issue with this kind of visualization is that

it shows all 2N points in the space; as N grows, this number becomes prohibitively large,

making it impossible to visualize NK landscapes with sufficiently large N .
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(a) (b)

Figure 3.3: (a) Rectangular vs. (b) spherical visualization of NK fitness landscapes. The
rectangular visualization shows all points in the search space, but is not continuous, and
the spherical one retains the sense of continuous space, but has less resolution further away
from the poles.

A different, novel approach is taken in Figure 3.3 (b). In this spherical approach, the

continuity of the space is preserved, and the space is represented with variable resolution.

One point is chosen as the focus (e.g. 11111 in the five-dimensional case), and all of its

neighbors in the original space (e.g. 01111, 10111, 11011, 11101, and 11110) are shown

as its neighbors on the sphere, around a circle at distance 1. At distance 2, points with two

bits away from the original are shown, by combining bit flips of the adjacent neighbors (to

00111, 10011, 11001, 11100, 01110), and so on until the complement (00000) of the focus

point is reached at the other side of the sphere. In this manner, continuity of the original

space is maintained in the grid that results on the sphere: nearby points in the grid are

indeed neighbors in the original space, differing by one bit. The elevation and brightness of

the spherical surface represents the fitness of the points on it: The higher the point and the

lighter it is, the higher the fitness.

The resolution of this representation is full near the poles (i.e. at distance 1 and 4 in

the five-dimensional case), and it decreases towards the equator (at distances 2 and 3, only
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five of the 10 points are located on the grid). For visualization (as in Figures 4.2 and 5.5),

other points of interest can be shown in the quadrilateral regions between the actual grid

points, although their specific locations within those regions are undetermined. They are

placed so that the distance between each point and the north pole point corresponds to the

Hamming distance between them. Among the quadrilateral regions along the meridian at

that distance, each point is in the one whose corners are closest to the point.

The main purpose of this visualization is to represent the local neighborhood of a

specific point intuitively as a continuous space, with gradually less resolution towards the

horizon. It thus gives a concrete snapshot of the current state of the search. The focus point

can also be moved as the search progresses, resulting in a detailed track of the process.

Such a visualization tool is implemented in a software package NKVis, i.e. a visualization

tool for NK fitness landscapes, which is freely available at http://nn.cs.utexas.edu/?nkvis.

This visualization will be used in this dissertation to demonstrate diversity behavior by the

agents (e.g. Figures 4.2 and 5.5). The details of those agents are described next.

3.3 Agents

Each search agent is a software entity that looks for high-fitness points in the given fitness

landscape. The behavior of an agent depends on the current state of the fitness landscape,

the agent’s strategy, and the current points in its memory.

Formally, the search agent’s knowledge X (t) of the landscape and its topography at

time t consists of the points xi with fitness values z(xi) (1 ≤ i ≤ t), where z is the fitness

function:

X (t) = {[x1, z(x1)], [x2, z(x2)], ...[xt, z(xt)]}. (3.1)

The agent moves to the next (i.e. (t + 1)th) point using a search strategy S based

on what the agent already knows about the landscape (i.e. points visited by that agent and
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other agents):

xt+1 = S[X (t)]. (3.2)

An agent’s strategy S consists of two components that determine how the agent

will use its current knowledge. The first strategy component, S1, specifies which type of

memory (i.e. public or private, Section 3.4) and which search method (i.e. explore globally

or exploit locally, Section 3.6) the agent will employ. The second strategy component, S2,

specifies in which type of memory the agent will place the last point it found.

The simulation runs in discrete time steps, where every time step each agent is

allowed to move according to its strategy and based on its current knowledge (Algorithm 1).

At the beginning of a time step, each agent probabilistically selects a search method and

a source memory for the search starting point. This point is given as input to the search

method chosen by the agent to find a new high-fitness point. At the end of each time step, if

the agent has discovered a point that is better than the previous one, it schedules that point

to be placed into the destination memory.

Algorithm 1 Agent’s algorithm to complete one time step
1: Pick a search method and source memory probabilistically using S1 strategy.
2: Perform one search step starting with the best point in the source memory.
3: if found a better point than the last one then
4: Pick a destination memory probabilistically using S2 strategy.
5: Schedule placement of the new point in the destination memory.
6: end if

Even though the simulation advances the agents sequentially (Algorithm 2), the

collective outcome of each time step in the simulation is independent of the agent execution

order, due to the delayed execution of the side effects of agent actions. That is, every time

step the simulator records landscape visits performed and public memory updates scheduled

by agents, without actually making any changes immediately (line 5 in the algorithm). The

recorded agent visits are performed at the end of each time step after all the agents complete

their search steps, and the resulting landscape changes are carried out (line 7). Similarly,
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public memory updates scheduled during a time step are applied at the end of that step

(line 8). The simulation is then carried out until the agents have searched a significant part

of the space (100 points in the experiments in Section 4.5 and Chapter 5, 500 in Section 4.4,

and 200 in the rest of Chapter 4). The memory types will be described next.

Algorithm 2 Simulation algorithm
1: Initialize simulation and agents.
2: for each time step until the maximum number of steps is reached do
3: for each agent ai do
4: Advance ai one time step (Algorithm 1).
5: Record any landscape visits and public memory updates by ai.
6: end for
7: Apply recorded landscape visits by updating fitness landscape.
8: Apply recorded public memory updates.
9: end for

3.4 Memory

Agents can place points in two types of memory: public and private. In terms of the inno-

vation search example, public memory corresponds to public knowledge through patents,

and private memory to trade secrets. Because memory contents change at each time step,

public and private memory are denoted as Xpub(t) and Xpriv(t), respectively.

Public memory can be accessed by all agents, and it serves as a common knowl-

edge base among agents, thereby enabling cooperation. That is, through the use of public

memory, agents can communicate the discovery of high-fitness points to other agents. This

information in turn attracts the other agents to those good points, potentially benefiting all

agents. However, use of public memory also makes it likely for all agents to spend their

time in the same region of the search space, and through dynamic landscape changes, may

lead to decreasing fitness.

On the other hand, private memory is unique to each agent. Each agent can place

points in its own private memory, where they are hidden from other agents. When agents
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(a) (b)

Figure 3.4: A conceptual illustration of crowding. (a) Agent A is first to discover a high-
fitness point. (b) Soon after, multiple agents (competitors, labeled C) flock to the same
peak. As a result, the peak region sinks. This crowding effect and the opposite effect of
boosting model how agents interact indirectly through landscape changes.

make use of their private memory, they are more likely to spread out and explore different

regions of the fitness landscape, leading to increased coverage of the search space.

Knowledge, i.e. agents’ point memory, and the changing landscape, i.e. flocking,

result in competitive multi-agent search. They capture interactions between agents, which

are described next.

3.5 Agent Interactions

There are two types of interactions between agents: cooperation and competition, of which

the two memory types are a crucial part. Private memory models the knowledge hidden

from other agents, thereby providing a competitive environment. On the other hand, pub-

lic memory models the knowledge shared among all agents. Therefore, public memory

provides a direct way to cooperate.

On a fitness landscape with crowding, i.e. flocking with intensity less than 1.0,
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the fitness landscape region around an agent sinks, which is akin to harvesting or depleting

limited resources. Therefore, in such landscapes, to maximize their performance, the agents

need not only find high-fitness regions in the landscape, but also do so before others do,

thereby creating a competitive environment. Figure 3.4 visualizes this idea. Competition is

also facilitated by the use of private memory, since it lets agents hide their discoveries from

others, preventing them from accessing those points.

Another type of agent interaction is cooperation, which happens when the fitness

landscape has boosting, i.e. flocking with intensity greater than 1.0. In that case, when

multiple agents are in the same fitness landscape region, they benefit from each other’s

existence: The fitness landscape rises more quickly than it would with a single agent in

the same region, which might happen, for example, in innovation search when excitement

is created about a new product. Furthermore, cooperation is also obtained when agents

use public memory since that allows each agent to be informed about high-fitness point

discoveries of other agents.

A third type of interaction involves both cooperation and competition. Real-world

competitive search domains often have this type of interaction. For instance, in an inno-

vation search domain where firms search for products in product feature space, an agent

finds a useful product, i.e. a useful combination of product features. When informed about

this discovery through cooperative means, such as via public memory, other firms flock to

the same region and look for ways to improve upon the initial point, i.e. exploit that region

in the search space. The market for these products grows as consumers get excited about

them and the firms find more value for them. That region in the landscape becomes fruitful

for a limited time because of the excitement and possibly because firms add to its value

by discovering new uses for the product, benefiting themselves and others, i.e. resulting in

cooperation. However, as the region loses its novelty and the improved innovation benefit

period wears out, competition becomes more dominant and the region gradually becomes

depleted. Eventually, firms can no longer benefit from spending time in that region and
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move elsewhere in the space.

These cooperative and competitive interactions are key to the modeling of compet-

itive multi-agent search in this dissertation. The next section describes how agents search

for new points.

3.6 Search Methods

To find a new point, an agent takes the best point currently in the memory (either public or

private, depending on the strategy), and performs a search using this point as the starting

location. Agents employ two search methods probabilistically depending on their S1 strat-

egy: the exploit search method, i.e. taking a local step, and the explore search method, i.e.

making a long jump in the search space. These two methods are motivated by how agents,

such as innovating firms, search in the real world (Section 2.1; March, 1991; note that thus

these terms in this dissertation do not refer to deterministic and stochastic actions like they

do in the reinforcement learning literature, but instead to the length of the search step, as

they do in the management science literature).

The exploit search method starts with a given point in the search space. It then tries

to discover new high-fitness points that are immediate neighbors of that point, i.e. are at

1-bit distance from it. Each new point is generated by flipping one bit in the point’s N -bit

representation. If the new point has a better fitness than the starting point, that point is

placed in memory. Otherwise, the search continues by flipping another bit of the starting

point, and so on until all bits are tried. The order of the flipped bits is a random permutation

of numbers 1 through N .

The explore search method also starts with a given point, but it obtains new points

in a different way. From the starting point, it jumps to a new point that is not an immediate

neighbor. More specifically, it generates a new point by flipping multiple random bits of the

starting point simultaneously and continues to do so until the new point has higher fitness

than the starting point, or the maximum number of jump attempts is reached. The number
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of bits to be flipped is also chosen randomly within a range given in simulation parameters.

The range used in most of the experiments in this dissertation is [0.5, 1.0], which means

that a new point in an exploration step is obtained by flipping between 50-100% of the bits

of the starting point. The exploration action is thus a relatively long jump, and therefore

distinctly different from the exploitation action.

These search methods provide two actions for agents to perform on the starting

point. They are selected stochastically based on the agent’s strategy, as described next.

3.7 Agent Strategy

Agents select among the two search methods using a search strategy. To represent this strat-

egy, the state of each agent is converted to a discrete form based on whether the considered

points’ fitness values are less than 0.5 (i.e. low fitness) or more than 0.5 (i.e. high fitness).

The two components of an agent’s strategy, S1 and S2, consist of a set of probability values

for each discrete state of the agent. Tables 3.1 and 3.2 show example S1 and S2 strategies,

respectively. Each row represents a discrete state of an agent, and each column represents

an action. The agents choose their actions probabilistically depending on their current state,

according to the probabilities in these tables.

The S1 strategy component is employed by agents to visit a new point. Using S1,

an agent selects both a search method and a starting point, i.e. the memory’s best point from

which the search begins, depending on the discrete-valued fitness of the best points of public

and private memory. The state consists of the discrete-valued fitness of the two memories

and the action is a combination of the search method and the starting point chosen. Thus,

there are four possible states (low or high fitness for public memory’s best point and low or

high fitness for private memory’s best point) and four possible actions (exploit or explore

with public or private memory). The search yields a new point for the agent to visit. Thus,
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PPPPPPPPPState:
Action: Exploit with Exploit with Explore with Explore with

public mem. private mem. public mem. private mem.
Public: low fit.

0.1 0.2 0.3 0.4
Private: low fit.
Public: low fit.

0.0 1.0 0 0
Private: high fit.
Public: high fit.

0.005 0.995 0 0
Private: low fit.
Public: high fit.

0 0 0.9 0.1
Private: high fit.

Table 3.1: An example S1 strategy component, where each row represents a state, and each
column represents an action. S1 consists of 4 × 4 probability values, one per action-state
combination, which are used for selecting an action (i.e. a search method and a starting
point) given the state (i.e. the binary-valued fitness of the best points in public and private
memory). Each row of probability values adds up to 1.0, and determines what the agent
will do in the corresponding state. For instance, the first row of this particular strategy
specifies that when both the best public point and the best private point have low fitness, the
agent will exploit that public point with 0.1 probability, exploit that private point with 0.2
probability, explore starting with that public point with 0.3 probability, or explore starting
with that private point with 0.4 probability.

XXXXXXXXXXXState:
Action: Place in Place in

public memory private memory
New point: low fitness 0.25 0.75
New point: high fitness 0.7 0.3

Table 3.2: An example S2 strategy component. S2 consists of 2× 2 probability values (for
two actions and two states) for determining to which memory to place the new point given
the discrete fitness of that point. Each row of probabilities adds up to 1.0, and determines
what the agent will do in the corresponding state. In this example, the agent will place
each new low-fitness point into public memory with 0.25 probability and into private mem-
ory with 0.75 probability. The agent strategies can be visualized graphically as shown in
Figure 3.5.

S1 can be formalized as

xt+1 = S1(Xpub(t),Xpriv(t)). (3.3)

On the other hand, using the S2 strategy component, agents determine where to put
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a newly discovered point (i.e. the action) depending on the fitness of the new point xt+1 (i.e.

the state). Thus, there are two states (low fitness or high fitness) and two actions (placing

the point in public or private memory). Formally, S2 is used to update knowledge, i.e.

X (t+ 1) = {Xpub(t+ 1),Xpriv(t+ 1)}

= S2(z(xt+1),Xpub(t),Xpriv(t)).
(3.4)

where z is the fitness function.

The S1 and S2 strategies determine how agents behave and how knowledge gets up-

dated in the simulation. They can be represented directly as vectors of real numbers such as

those in Tables 3.1 and 3.2, and visualized graphically in Figure 3.5, and this representation

is sufficient for the hand-coded strategies in this dissertation. In Section 5.1, strategies will

also be encoded as CPPNs so that they can be evolved via neuroevolution methods.

3.8 Conclusion

This chapter described a formalization for CMAS in an abstract domain. This formaliza-

tion includes a fitness landscape based on the NK model, modified so that fitness of regions

around points that are visited by agents change. They are first to be boosted, then be re-

duced. The agents that search for points on this fitness landscape were also described.

Specifically, the strategy they used to find new points in the search space, the public and

private memory where they store those new points, which allow them to cooperate and com-

pete, were detailed. Furthermore, since N -dimensional binary spaces get prohibitively large

with high N , a spherical visualization for NK fitness landscape was introduced. It allows

representing the local neighborhood of a chosen point with high resolution and points far-

ther away with lower resolution. The next chapter will focus on investigation of the effects

of various strategy parameters, and characterization of performance of various hand-coded

agent strategies in different environments.
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Pub. ↓ Pub. ↓ Pub. ↑ Pub. ↑
Priv. ↓ Priv. ↑ Priv. ↓ Priv. ↑ Point ↓ Point ↑

Exploit pub.
Exploit priv.
Explore pub.
Explore priv.

Point → pub.

Point → priv.

Figure 3.5: A pie chart depiction of the example agent strategy shown in Tables 3.1 and 3.2.
Each of the circles corresponds to a row of one of those two tables (i.e. a state): four circles
on the left for S1 and two on the right for S2, where ↓ and ↑ represent low and high fitness,
respectively. Each shading pattern corresponds to a column of one of the two tables (i.e. an
action). The size of each slice represents the probability of the action in the corresponding
table row and column. This chart format allows visualization of the 20 probability values
of a strategy in a compact way. Additionally, the black band around each circle indicates
the average percentage of time the agent spent in the state that corresponds to the circle
(i.e. a row in Tables 3.1 and 3.2). The example percentages shown from left to right are
5%, 10%, 25%, and 60% for S1, and 20% and 80% for S2. The total area of gray slices
overall indicates how much private memory is used, whereas the amount of dotted shading
in the first four circles tells the ratio of exploration. For instance, the first circle shows a row
with non-zero probabilities for all actions, whereas the second circle specifies that only one
action is possible in the corresponding state (i.e. with 1.0 probability). In certain cases, the
probabilities for all but one action are close but not equal to 1.0 (e.g. third row in Table 3.1),
which is seen in the visualization as a sliver (e.g. the third circle). Such small but nonzero
probabilities were often discovered in the evolutionary experiments (Tables 5.1 and 5.2),
and they turned out to make a significant difference in performance compared to similar
fixed strategies where those probabilities are 0.0 (Figure 5.4).
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Chapter 4

Characterization of NK Strategies

This chapter includes experimental analysis of the choice of memory type (i.e. private vs.

public memory) and search method (i.e. exploitation vs. exploration search), benefits of a

specific intuitive strategy, and effects of exploration distance (i.e. short, long, and gradually

decreasing exploration) and agent density (i.e. sparse vs. dense). A number of different

environments where the agents search according to fixed predetermined strategies are eval-

uated, with the goal of characterizing the effects of search diversity, search method balance,

exploration focus, environment size, and opponent strategies in CMAS in general.

4.1 Effect of Public vs. Private Memory

The first experiment investigates how different mixtures of the two memory types affect

how diverse the search is. The two types of memory are used together at levels varying

from using only private memory to using only public memory, with three intermediate

levels. The goal of the experiment is to understand how knowledge sharing and diversity

affect search.

In one extreme (i.e. when agents use only private memory) each agent searches

without any information sharing, resulting in maximal diversity. In competitive environ-
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ments diversity delays crowding and improves the performance of agents. On the other

hand, public memory allows agents to take advantage of the discoveries of other agents,

and hence may be beneficial to the agent as well. Therefore, there is a trade-off in the use

of public versus private memory.

This experiment was set up to evaluate the effects of using these two types of mem-

ory. The simulations had 10 agents with identical strategies on an NK landscape with

N = 30 and K = 4. Landscape changes with initial boosting followed by crowding, with

the flocking intensity decaying from 1.2 to 0.9 linearly. This way of changing flocking

intensity creates interactions with both cooperation and competition as described in Sec-

tion 3.5. Two jump ranges were used for exploration, [0.5, 1.0] (a long range) and [0,

0.2] (a short range). A jump range of [0.5, 1.0] means that a new point in an exploration

step is obtained by flipping between 50-100% of all bits of the starting point, resulting in a

relatively long jump.

In this experiment and the experiments through Section 4.4, all agents had the same

strategy, and were allowed to use S1 (i.e. select a new search method and source memory)

only once every five time steps, and keep using the same ones for the following four steps in

order to have the agents behave more consistently. Also, the multi-agent simulation ran for

200 time steps (except in Section 4.4, where it ran for 500 time steps), and was repeated 200

times. The average performance across all simulation runs and all agents was calculated for

each agent strategy.

Five agent strategies were compared, each with a different S1 strategy: (1) use only

public memory, (2) use mostly public memory (i.e. public with 75% probability, private

with 25% probability), (3) use public and private memory equally, (4) use mostly private

memory (i.e. private with 75% probability, public with 25% probability), and (5) use only

private memory. Each of the five strategies explored or exploited with 50% probability. S2

was identical for each strategy, and used public and private memory equally.

Figure 4.1 (a) and (b) show the diversity advantage with flocking, with jump ranges
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Figure 4.1: Effect of diversity with flocking, i.e. with a dynamic landscape. Each plot rep-
resents the average fitness of 10 agents searching with an identical strategy in the same
landscape. Advantage of higher diversity (i.e. using more private memory) is seen (a) with
jump range [0.5, 1.0] and (b) with jump range [0, 0.2]. When the agents utilize private
memory, their searches are more diverse, and they find points with higher fitness. (c) The
speed of crowding can be reduced by decreasing the limit for the number of visits at the
same time step. Decreasing the limit to two reduces the advantage of diversity. (d) Re-
ducing the limit further to one eliminates the advantage entirely. This result shows that the
disadvantage of the public-only strategy is indeed caused by quick crowding (i.e. the Twitter
effect). When all agents use only public memory, diversity is lost, and the agents perform
poorly on average. Therefore, diversity is crucial for good performance overall.
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[0.5, 1.0] and [0, 0.2], respectively. When agents use primarily private memory, i.e. visit a

diverse set of points at a given time step, performance improves, with differing lower and

upper boundaries depending on the choice of the jump range parameter. Simultaneous visits

by multiple agents to the same point more quickly deplete the region around a point, taking

that region into crowding faster than with a single visit per step. If such quick depletion is

prevented by reducing the allowed maximum visits per step, the advantage of diversity is

lost. This result can be seen in Figure 4.1 (c), where the maximum visits per step parameter

is two, reduced from five in Figure 4.1 (b). When this parameter is further reduced to one,

which allows only one flocking change to each point per step, the most diverse strategy,

i.e. the one using only private memory, starts doing worse than the other strategies, as seen

in Figure 4.1 (d). By limiting the rate of depletion in this manner, the reason why the use

only public memory strategy performed worst among other strategies is verified: the quick

depletion due to the lack of diversity. That is, when only public memory is used, all agents

take the same best point in public memory as a starting point for their search, and therefore

are more likely to be in the same region. Thus a Twitter effect results: all agents follow

the same lead, and much of the space remains unexplored (Figure 4.2 (a)). As more private

memory is used, less information is shared, and the points will become more diverse.

Interestingly, when the landscape does not change (i.e. when flocking is disabled),

Figure 4.3 shows that using both memory types in the simulation is better than using only

one type of memory. So, using only private memory performs worse than using any mixture

of both memory types, unlike in the flocking case in Figure 4.1 (a). Flocking effects do not

exist in this case, but there may be another advantage to having higher diversity in the no-

flocking case: Searching with a more diverse set of points may lead to a higher probability

of finding higher-fitness regions in the search space. However, employing public memory

also helps in improving fitness by letting agents know about other agents’ discoveries. So,

there is a trade-off between public and private memory, as in the flocking case. The reason

why there is relatively little performance difference between private-only and public-only
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(a) The Twitter effect

(b) Wave-riding

Figure 4.2: The Twitter effect (a) and wave-riding behavior (b). The fitness of an agent’s
last visited point over 100 time steps is shown as a time series at left, and the corresponding
spherical visualization of these points is shown at right. The fitness and binary coordinates
of the agent’s position at time step 100 are displayed in the purple box, and the agent’s past
visited points identified with red dots (see Section 3.2 for details of this visualization). (a)
The fitness of an agent that always exploits with public memory where other agents also do
the same stays low throughout the simulation due to low diversity and overcrowding (i.e.
the Twitter effect). (b) The fitness of an an agent that always exploits with private mem-
ory initially rises with the landscape. As its current point starts sinking, the agent jumps
to a nearby point that has been partially boosted, and spends a few time steps there. It
then repeats this behavior. This behavior is clearest in sparse environments, demonstrating
how agents can compete well by being constantly on the move. It is also similar to in-
cremental improvement in many high-technology industries, giving them a computational
interpretation. Animations of the Twitter effect and wave-riding behavior can be seen at
http://nn.cs.utexas.edu/?bahceci:phd14.
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Figure 4.3: Effect of diversity without flocking, i.e. when the landscape is fixed. Using both
memory types turns out to be better than using either only public or only private memory:
Private memory helps find new high-fitness points, and public memory utilize those that
have already been found.

strategies may be that both extremes in this trade-off are equally bad, simply due to the

different landscape dynamics caused by the lack of flocking and a lower advantage to using

private memory over public memory compared to the flocking case. So, whether keeping

all information private is good or not depends on the amount of flocking in the environment.

The results of this experiment generally show that minimal diversity (i.e. Twitter ef-

fect) is bad for performance and the strategies that have higher diversity (i.e. ones that make

use of private memory) perform better. In terms of the application of modeling innovation,

this result means that it makes sense to keep diversity among agents high by keeping some

information private (i.e. hidden from other agents) so that all agents do not crowd the same

innovation neighborhood.
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4.2 Effect of the Choice of Search Method

To see how the choice of search method (i.e. exploration vs. exploitation) affects perfor-

mance, various combinations were tested. Changing the search method involves modifying

the S1 strategy, while keeping the S2 strategy fixed.

Since the focus of this experiment is the search method, the strategies selected for

the experiment are specified to use the same memory type, which is selected as private

memory to prevent any interfering effects of communication between agents. So, the agents

put all new points into private memory and pick their starting points only from private

memory. The S1 strategy is variable with different levels of exploitation and exploration

depending on whether the best point in private memory has high or low fitness. Five S1

strategies were compared: always exploit, exploit on low fitness, explore on high fitness,

exploit and explore equally (i.e. with 50% probability), explore on low fitness, exploit on

high fitness, and always explore.

Furthermore, to see how robust the observed effects are, two values for two sim-

ulation parameters, namely exploration jump range and boosting level, were considered,

resulting in four sets of results. The jump range used for exploration was either [0.5, 1.0] or

[0, 0.2]. As in the previous experiment, flocking consists of initial boosting and subsequent

crowding. The flocking intensity gradually decays either from 1.2 to 0.9 or from 1.1 to 0.9.

Figure 4.4 shows the results for these four parameter settings. With high jump

range (Figure 4.4 (b) and (d)), the always exploit strategy is significantly better than the

other four strategies. However, when the jump range is low (Figure 4.4 (a) and (c)), there

is not much difference, presumably because when the agent makes short jumps, the explore

search method behaves similarly to the exploit search method.

Short jumps (which happen during exploitation or exploration) allow the agent to

ride a boosting wave, i.e. move with the area that is being boosted (and maybe a little

crowded) as it moves through the space. A single agent’s fitness curve in a single simulation

shows this wave-riding behavior in detail (Figure 4.2 (b)). An agent first stays on a point
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Figure 4.4: Effect of mixing exploration and exploitation at various levels in agents’ strate-
gies. Only private memory is used for both S1 and S2 in all five strategies. All 10 agents
share the same strategy. Initial boosting intensity is high (1.2) in the top row and low (1.1)
in the bottom row. When exploration jumps are long [0.5-1.0] as in the right column, strate-
gies that do exploration show an oscillation behavior, unlike when exploration jumps are
short [0-0.2] as in the left column. The always exploit strategy is significantly better than
the others when exploration jumps are long, but not when they are short. Note that the
y-axes have different scales to make these observations more visible.
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that gets initially boosted and subsequently crowded, and then moves to different points a

few times. The agent’s timing is such that when it moves to a new point, the new point has

been partially boosted previously, but it can still be boosted some more (i.e. has not reached

the fitness ceiling of 1.0 yet). This behavior is possible because when an agent visits a point,

it boosts all nearby points in the neighborhood (defined by the flocking radius); therefore,

as the point starts losing fitness due to crowding, the agent can find a similar nearby point

that is partially boosted. Hence, the agent moves on the top of a series of boosting curves

similarly to a surfer riding a wave. When averaged across simulation runs and agents,

the most effective wave-riding behavior is seen in Figure 4.4 (a), with the highest average

fitness values.

Another interesting observation is an oscillation behavior with some strategies. A

typical such behavior of an individual agent in a single run can be seen in Figure 4.5. Such

oscillations happen when an agent is repeatedly unable to find a point that is better than

their current point, which prevents the agent from riding a wave, and causes it to stay at

its current point too long (i.e. until the point’s fitness sinks below the fitness of points that

it can reach in one time step). This type of regular oscillation is common with strategies

that explore with long jumps, as can be seen in Figure 4.4 (b) and (d). When exploration

jumps are no larger than the flocking radius, which is 2.0, as in Figure 4.4 (a) and (c), such

oscillations do not emerge because explored points already get boosted by the agent when

it moves to its current point.

The wave-riding behavior result is significant because it provides a straightforward

and powerful way for agents to collect high-fitness points without changing their strategy.

This result may be important as an insight in innovation search in real-world industries. If

firms choose their next area of investment and product research wisely, such as choosing

markets and interest areas that are becoming popular, they could ride a similar high-fitness

wave.

On the other hand, the oscillations in some results prevent the agents from main-
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Figure 4.5: A typical oscillation behavior of an individual agent. This agent always explores
using private memory. Such oscillations indicate that the agent is not able to ride a wave
because it cannot find a point on which to move that has a higher fitness than its current
point. Instead, it stays at the same point until that point’s fitness becomes lower than fitness
of points it can reach in one step.

taining high performance. So, it would be beneficial to avoid using strategies that lead to

such high fluctuations. This observation also translates to innovation search: the innovators

should move quickly to ride the wave instead.

4.3 Evaluation of Explore on Low Fitness, Exploit on High Fit-

ness Strategy

This experiment investigates under which parameter settings the explore on low fitness,

exploit on high fitness strategy (Greve, 2003b; Cyert and March, 1963) is better than other

strategies. The reason this strategy is of interest is that it makes sense intuitively: If an agent

encounters a high-fitness point, it should search its nearby neighborhood. If the landscape is

not too rugged, there may be other good points in this neighborhood. If the agent comes to

a low-fitness point, it should jump to a random far away region, which should, on average,

be no worse than its current location.
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Figure 4.6: (a) The explore on low fitness, exploit on high fitness strategy is effective when
only public memory is used, compared to other combinations of exploration or exploitation
on high or low fitness. (b) However, that strategy offers no advantage when only private
memory is used. In fact, always exploit works best in this case. The reason is that it
establishes an effective wave-riding behavior. Thus, although intuitive, explore on low,
exploit on high is thus not the best strategy in all environments.

Again, flocking consisted of initial boosting and subsequent crowding, with flock-

ing intensity gradually decaying from 1.2 to 0.9 over 10 agent visits, and the exploration

jump range was [0.5, 1.0]. Two settings were investigated: one where only public mem-

ory is used and one where only private memory is used (because these two settings gave

characteristically different performance in earlier experiments).

As can be seen in Figure 4.6 (a), when only public memory is used, there is a statis-

tically significant advantage to the explore on low fitness, exploit on high fitness strategy. On

the other hand, when only private memory is used, that strategy is surpassed by the always

exploit strategy, which benefits from the wave-riding behavior described in Section 4.2. The

reason why wave-riding does not happen with the always exploit strategy with only public

memory might be that the required fitness level and timing are different.
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Thus, the initial hypothesis that the intuitive explore on low fitness, exploit on high

fitness strategy would be advantageous holds only in some cases. Although it is possi-

ble to see where the intuitive idea comes from, the reality is much more complicated and

interesting, and further study is required.

4.4 Effect of Exploration Focus

A fourth experiment investigates what happens when a different jump ranges are used in

the explore strategy. The motivation was to determine the optimal exploration range, i.e.

how far one should jump while exploring, to see whether gradually decreasing exploration

jump range would be beneficial, and to evaluate how exploration with different jump ranges

compared to an always exploit strategy. Gradually decreasing jump range is similar to

simulated annealing (Černỳ, 1985), where the solution candidates can initially jump far

away, but they are gradually cooled and are allowed gradually smaller jump freedom. This

process improves the performance of optimization.

Performance of strategies that only explore with different constant jump ranges

(namely [0, 0.2], [0.5, 1.0], and [0.8, 1.0]) were compared with each other and with an-

other one whose jump range gradually reduces from [0.8, 1.0] to [0, 0.2], as well as with

the always exploit strategy. This experiment was done with no flocking, i.e. with fixed fit-

ness landscape, to isolate the effect of exploration. Two different number of dimensions

(i.e. N ) were used: a low value of N = 12 and a high value of N = 30, with K = 4 in both

spaces. Because such a large increase in dimensionality results in a vastly larger landscape,

individual strategies may not be equally effective for both small and large spaces. There-

fore, a difference in the relative ability of the individual strategies was expected across the

two spaces.

In Figure 4.7 (a) and (b), with both N = 12 and N = 30, using a short jump length

resulted in better performance than using long jumps. The always exploit strategy, on the

other hand, falls between the always explore strategies with jump ranges [0, 0.2] and [0.5,
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Figure 4.7: Effect of exploration jump range when there is no flocking with (a) N = 12 and
(b) N = 30. Gradually decreasing exploration jump range turns out to be advantageous for
N = 12, but not for N = 30. Thus, this strategy is helpful, but only if the search space is
sufficiently small.

1.0]. The performance ranks among the constant always explore strategies was the same.

Figure 4.7 (a) also shows that when N = 12 there is an advantage to gradually

decreasing the jump length, whereas in (b) with N = 30, short jumps and gradually short-

ening them both perform equally well. The reason may be that it is more difficult to find

the highest region in the search space when N is 30 as opposed to 12. Gradually reducing

jump length may make it possible to find such a region when N is small, but may not offer

a sufficient boost when N is large, i.e. when the search space is much larger.

Thus, the simulated-annealing-like reduction in jump length was not always advan-

tageous. The different relative performance of strategies between small and large spaces

may be important as a general rule thumb. It is thus important to evaluate a strategy in

environments with different characteristics, such as fitness landscape size and strategies of

opponent agents, which the next experiment will investigate in depth.
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4.5 Effect of Environment

The fifth experiment focuses on how a single agent performs in environments with different

sizes and opponent strategies (i.e. strategies of agents other than the evaluated one). Unlike

in the earlier experiments in this chapter, the simulation environments all had eight agents in

this experiment, and the simulations ran for 100 time steps. Moreover, only the first agent’s

strategy was evaluated, and the remaining seven agents were given the role of opponents,

all with a common manually specified and fixed strategy, which was not necessarily the

same as the first agent’s strategy. All agents were allowed to use S1 (i.e. select a new search

method and source memory) every time step. The S1 and S2 components of the opponents’

strategies were set to constant probabilities, resulting in a CMAS environment with specific

characteristics. Six distinct opponent strategies (i.e. six different environments) were imple-

mented: always exploit or always explore, and always using the best point from the public

memory, always using the best point from the private memory, or using either of those two

points with a 50% probability. These hand-coded strategies were selected because they are

intuitive, clear, and represent common strategies in innovation search (Katila, 2002; Greve,

2003a; Helfat, 1994).

The environments also varied in search space dimensions (N ), resulting in two

different densities of agents (i.e. number of agents divided by search space size): (1) sparse

environments with N = 20 and (2) dense ones with N = 10. The K parameter of the NK

landscapes was set to three in all environments to provide a moderate level of interaction

among the N dimensions. Such moderate interaction is motivated from the organizational

search perspective (Knudsen and Levinthal, 2007). The fitness landscape changed via initial

boosting and subsequent crowding as agents moved in the landscape, achieved by decaying

the flocking intensity from 1.05 to 0.9 linearly for each point over 10 agent visits to the

same point, with a flocking radius constant at 2.0. Due to this dynamic nature of the fitness

landscape, which is directly related to how many agents there are on average per search

space point, the environments are more naturally characterized by agent density rather than

43



search space size. These environment parameter values were chosen because they resulted

in meaningful innovation search behavior in preliminary simulations.

Performance with several distinct strategies in such environments is compared in

Figure 4.8. In each environment and for each evaluated strategy, the simulation was re-

peated 200 times with randomized agent starting points in each run. The performance of

the strategy was then calculated by averaging the performance across those runs, which in

turn was defined as the average fitness of the points that the agent with that strategy visited

during the 100 time steps (i.e the duration of the run). Since fitness of points in the search

space varies between 0 and 1, so does each strategy’s performance.

In the sparse environments (Figure 4.8a), the exploit with private memory strategy

performed the best among all evaluated strategies (with p-value < 10−9 compared to the

one with the second highest mean performance), except in the environments where the

opponents used only private memory. In those environments it tied with the exploit with

public memory strategy. Indeed, when the opponents never access the public memory,

that memory becomes equivalent to the private memory for the evaluated agent. Thus, the

successful strategy in the sparse environments can be described as exploit with a memory

that is not accessible by the opponents.

On the other hand, when the environment was dense (Figure 4.8b), exploring per-

formed better than exploiting in general. However, the best memory type to use while ex-

ploring depended on the opponent strategy. For instance, when the opponents explored with

public memory, it was better for the evaluated agent to use public memory (with p-value

< 10−3), whereas when the opponents exploited with public memory, it was better to use

private memory (with p-value < 10−8). Indeed, in this case the regions around good public

memory points would generally become crowded and therefore have low fitness, making

private memory search more effective.

These results suggest that different environments require different search strategies.

Further, finding an effective strategy for a given environment is possible and constitutes an
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Figure 4.8: Performance comparison among manually specified strategies in sparse (N =
20) and dense (N = 10) environments. Statistical significance is estimated between av-
erages over 200 starting locations and shown for the fixed strategies in each environment.
Error bars denote one unit of standard error of the mean and statistically significant dif-
ferences are indicated by stars. Note that because there is more interaction in the dense
environment and therefore more crowding, the y-axes have different scales. Each strategy
(represented by a bar of different color) was evaluated in six different homogeneous en-
vironments with seven identical opponents whose strategy is identified along the x-axis.
Different strategies perform best in different environments; finding an effective strategy for
a given environment is possible and an important and interesting challenge.
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interesting and important challenge that will be taken on in the next chapter.

4.6 Conclusion

The experiments in this chapter investigated various effects of utilized memory type, includ-

ing the Twitter effect that was observed when agents crowded the same region. Evaluating

the effect of different search methods yielded observations such as wave-riding and oscil-

lating performance curves, indicating that timing and how far an agent jumps when picking

new points matters in obtaining consistently good performance. Also, a specific intuitive

strategy (exploit on high, explore on low) was found to be effective only in specific cir-

cumstances, as was different exploration ranges. Finally, performance of a single agent was

evaluated in environments with differing size and opponent strategies demonstrating that a

choice of strategy matters. Obviously, such a hand-coded comparison can ever only include

a small subset of all possible strategies. The ones included are prototypical and cover the

space well, but there is no reason to believe that they are the best for the given environ-

ments. The next chapter will focus on optimization to find strategies that are better than

these prototypical ones.
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Chapter 5

Optimization of NK Strategies

In order to determine experimentally whether better strategies exist, this chapter first de-

scribes a strategy encoding suitable for optimization, then employs a machine discovery

method to do the optimization. First, a strategy is optimized for each environment sepa-

rately; second, the same method is used to create a general strategy by optimizing the aver-

age performance of a strategy across multiple environments; and third, they are compared

with a real-time tree search strategy.

5.1 Encoding Strategy Patterns for Optimization

Preliminary experiments on learning strategies showed that representing them as continu-

ous patterns through Compositional Pattern Producing Networks (CPPNs), which are neural

networks with nodes that have various activation functions, and are useful for creating pat-

terns such as symmetric ones (Stanley, 2007), as opposed to a set of distinct probability

values corresponding to strategy tables, leads to better results. The S1 and S2 strategy com-

ponents can be seen as functions that output the probability values in Tables 3.1 and 3.2. For

instance in the case of S2, the function takes two binary inputs: whether the new point has

low or high fitness, and whether the destination memory being considered is the public or
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private memory. Each combination of these binary inputs generates one of the probability

values in Table 3.2. This function can be implemented as a CPPN with two inputs and one

output, and with nodes that have either a sigmoid or a Gaussian activation function, which

can be evolved with a neuroevolution algorithm.

On the other hand, in the case of S1 there are four discrete inputs: whether the best

point in public memory has low or high fitness, whether the best point in private memory

has low or high fitness, whether exploit or explore action is being considered, and whether

the source memory for that action is public or private memory. This function can also be

represented as a CPPN with one output, but with four inputs instead of only two, to produce

probability values as in Table 3.1.

To simplify the approach further, the functions for S1 and S2 can be represented

together by a single CPPN (Figure 5.1) with four inputs and two outputs instead of by two

separate CPPNs with one output each. Utilizing such a combined CPPN for both S1 and S2

allows a single population of networks to be evolved. The components that belong together

to evolve together, sharing common structure.

To generate the 16 probability values in S1 (as in Table 3.1), all four inputs of

the CPPN network are used. The inputs are set to each combination of -1 or 1 in turn,

representing the different cells in the strategy table (where -1 corresponds to the 0 index).

The first output of the network is then entered into the corresponding S1 table cell. After

all cells have been filled in this manner, the rows of S1 are normalized to add up to 1. If

all values in a row are very small, then all cells in that row are set to equal probability. The

process for S2 is similar to S1, except that only the first two inputs of the CPPN are used,

and the second output unit of the network is used to calculate the values for the S2 cells.

This approach allows agent strategies to be evolved conveniently as CPPNs, which will be

described in the next section.
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O1 O2

I1 I2 I3 I4 B

Figure 5.1: An example CPPN with four inputs, a bias input, and two outputs. The number
of links and hidden nodes as well as weights of existing links are not fixed, and can change
during evolution. Combinations of -1 and 1 values supplied to input nodes I1, I2, I3, and I4
act as indices into the rows and columns of Tables 3.1 and 3.2 (with -1 value representing
index 0). For S1, I1 specifies whether public memory has low or high fitness, I2 specifies
whether private memory has low or high fitness, I3 specifies whether the action is exploit
or explore, and I4 specifies whether the action is carried out using public or private mem-
ory; the output value of O1 for each combination of the four inputs determines the action
probability for the state and action specified by that combination, which is the value shown
in the corresponding cell of Table 3.1. Similarly, for S2, I1 specifies whether the new point
has low or high fitness, and I4 specifies whether the action is to place that point in public
or private memory; the output value of O2 for each combination of those two inputs deter-
mines the action probability for the state and action specified by that combination, which is
the value shown in the corresponding cell of Table 3.2. While calculating probabilities for
S2, I2 and I3 are set to 0.0. In this manner, strategies can be represented continuously as
CPPNs, with S1 and S2 sharing the same network structure.

5.2 Evolving Strategies for a Particular Environment

CPPNs that represent strategies were evolved using NEAT with a population of size 100 in

the same homogeneous environments as before. NEAT was allowed to run for 500 genera-

tions, which was the point by when performance plateaued in preliminary runs (Figure 5.2).

Evolutionary runs were repeated 64 times. Other parameters that were used during evolu-
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Figure 5.2: Learning curve for one of the evolutionary runs, showing the maximum and
mean performance of the evolved population. The shaded region indicates standard error of
the mean. Maximum performance usually plateaued well before 500 generations.

tion are listed in Tables A.2, A.3, and A.4. At each generation of an evolutionary run, the

fitness of each population individual, i.e. each CPPN, was calculated by first generating

the S1 and S2 probability tables from the CPPN, and then using those tables to control the

single evaluated agent in the environment. Sizes of evolved CPPNs vary, but average 26.6

and 26.9 nodes, and 75.4 and 75.6 links for sparse and dense environments, respectively.

Tables 5.1 and 5.2 show distributions of strategies evolved on sparse and dense en-

vironments, with example evolved strategies depicted in pie charts as in Figure 3.5. To

visualize the distribution of the 64 evolved strategies, they were first represented as 20-

dimensional vectors and their dimensionality was then reduced to one using PCA (sepa-

rately for sparse and dense environments). In the dense environments, the first principal

component captured 83% of the variance, and in the sparse environments, 39%, whereas

the second principal component captured 8% and 16%, respectively, suggesting that one-

50



Sparse Environment PCA for All Evolved Strategies Sample StrategiesId Opponents

←− Public Private −→ Pub. ↓ Pub. ↓ Pub. ↑ Pub. ↑
Priv. ↓ Priv. ↑ Priv. ↓ Priv. ↑ Point ↓ Point ↑

1 Exploit with public memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1  �� ��1

2 Explore with public memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1  �� ��1

3 Exploit with private memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1  2  3  4  5  

�� ��1�� ��2�� ��3�� ��4�� ��5

4 Explore with private memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1  2  
�� ��1�� ��2

5 Exploit with either memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1  �� ��1

6 Explore with either memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1  �� ��1

7
Environments 1-6 above and
one with RTTS opponents
(Avg. over all environments)

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1  �� ��1

8
One opponent from env.
1-6 and one RTTS opponent
(Heterogeneous environment)

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1  �� ��1

Exploit pub.
Exploit priv.
Explore pub.
Explore priv.

Point → pub.

Point → priv.

Table 5.1: Strategies evolved in sparse environments (N = 20). The third column shows
all 64 strategies evolved in the environment with the opponents specified in the second
column. The x-axis is the first principal component (from PCA across all strategies in
all sparse environments) and the y-axis is the fitness of the strategy. The x-axis repre-
sents primarily public vs. private memory preference, with public memory use increasing
toward the left and private memory use toward the right. Using the pie chart format of Fig-
ure 3.5, the fourth column displays sample strategies for each environment, numbered to
indicate their positions on the PCA plot. Pie charts for all evolved strategies can be seen at
http://nn.cs.utexas.edu/?bahceci:phd14. Most strategies cluster to the right, indicating that
private memory search works well, except in Environments 3 and 4, where the distribution
is bimodal (because the opponents do not use public memory). In some cases, parts of the
strategy do not matter and there is considerable diversity (e.g. in Environment 3). The best
strategies are slightly less than extreme, which allows them to perform better than fixed
strategies.
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Dense Environment PCA for All Evolved Strategies Sample StrategiesId Opponents

←− Public Private −→ Pub. ↓ Pub. ↓ Pub. ↑ Pub. ↑
Priv. ↓ Priv. ↑ Priv. ↓ Priv. ↑ Point ↓ Point ↑

1 Exploit with public memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1  �� ��1

2 Explore with public memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1  2  
�� ��1�� ��2

3 Exploit with private memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1  2  
�� ��1�� ��2

4 Explore with private memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1  2  
�� ��1�� ��2

5 Exploit with either memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1  �� ��1

6 Explore with either memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1  2  
�� ��1�� ��2

7
Environments 1-6 above and
one with RTTS opponents
(Avg. over all environments)

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1  �� ��1

8
One opponent from env. 1-6
and one RTTS opponent
(Heterogeneous environment)

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1  �� ��1

Exploit pub.
Exploit priv.
Explore pub.
Explore priv.

Point → pub.

Point → priv.

Table 5.2: Strategies evolved in dense environments (N = 10). The x-axis scale in the
PCA plots is inverted so that the shift from public to private memory use is in left-to-
right direction as in Table 5.1; the y-axes have a different scale from Table 5.1. In the
dense environments, there is less variability due to stronger evolutionary pressure. Memory
preference in different environments is similar to that in Table 5.1, with the exception of
Environment 2, where an opposite memory preference emerged. This effect is investigated
further in Figure 5.3. Pie charts for all evolved strategies can be seen at http://nn.cs.utexas.
edu/?bahceci:phd14.
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dimensional visualization is indeed meaningful. The reason for the lower variance captured

by the first principal component in the sparse environments (39%) compared to that in the

dense environments (83%) is that sparse environments lead to more diverse evolved strate-

gies, which is investigated in the fifth observation below.

The first PCA dimension is the x-axis of the plots in the third column of Tables 5.1

and 5.2. Note that the x-axis scale is the same for all sparse environments, but different from

the axis for the dense environments. The y-axis of the PCA plots indicates the fitness of the

strategies. Interestingly, in both sparse and dense environments the x-axis corresponds to a

preference for using public or private memory: The leftmost strategies across all plots have

the highest public memory use, whereas the rightmost ones use private memory the most.

This tendency can be clearly seen e.g. in the two sample strategies for Environment 4 in

Table 5.1.

Several interesting observations can be made based on Tables 5.1 and 5.2. First,

most strategies cluster on one side of the PCA plot, except for Environments 3 and 4,

where a bimodal distribution is observed. These two environments are the only ones where

the opponents uses only private memory. Since the opponents never use public points,

public memory effectively becomes just another private memory for the evolved agent, and

a bimodal distribution results. This result is very similar to the observation in Section 4.5

where public and private memory use resulted in similar performance when the opponents

used only private memory.

Second, the distribution of strategies evolved in most of the remaining environments

is biased toward strategies that prefer private memory over public memory. Thus, evolution

discovered that it is good to be different from competitors. This result also parallels the

performance comparison of manual strategies in Figure 4.8. Furthermore, private memory

preference in sparse environments often results in wave-riding behavior as observed in Sec-

tion 4.2. Hence, the evolutionary simulations rediscovered this strategy, thus demonstrating

that it is indeed a good one.
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Figure 5.3: The number of prior agent visits within the flocking radius of the evaluated agent
in Environments 1 and 2 in Tables 5.1 and 5.2. Agent visits cause the landscape to sink due
to crowding, and lead to lower fitness. The bars labeled Public represent the average number
of prior visits when the evaluated agent uses one of the 64 evolved strategies that prefer
public memory the most (i.e. the leftmost 64 strategies in the PCA plots of all environments
in Tables 5.1, for the bars labeled Sparse, and 5.2, for the bars labeled Dense. Similarly, the
bars labeled Private show the average number of visits with the rightmost 64 strategies in the
same tables. The bars’ colors, white and gray, indicate prior visits by the evaluated agent
(i.e. “self”) or by its opponents, respectively. Switching from private strategies to public
ones increases the total number of prior visits in three out of the four environments, but not
in dense environment 2. As a result, evolution selects for a public memory strategy in this
case, demonstrating that it can find effective strategies that would be difficult to discover by
hand.

Third, in Environment 2 in Table 5.2, where opponents explore with public memory,

a surprising opposite effect is seen: public memory is preferred over private memory. Not

only is this result counterintuitive, it is also the opposite of that in its sparse counterpart.

This effect can be explained by measuring the number of prior visits to a given
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area by the agent and its opponents. As Figure 5.3 shows, the number of prior visits that

affect the evaluated agent is usually higher when the agent uses a public-memory strategy

than when it uses a private-memory strategy, and therefore evolution usually favors private

memory. However, the opposite is true for dense environment 2: The public-memory strat-

egy actually results in fewer prior visits. The reason becomes clear when the source of prior

visits is considered. When the evaluated agent uses private memory, it is affected by many

of its own prior visits, but manages to avoid opponent’s prior visits relatively well. When it

switches to using public memory, it reduces its own prior visits, but also increases the op-

ponent’s visits. Such a trade is usually detrimental, but not so in the dense environment 2.

Because the environment is dense and the opponents are exploring, even when the agent is

using private memory, the opponents make many prior visits already by chance. Switching

to public strategy therefore does not increase the opponent visits much, but it does reduce

self-visits significantly. The net effect is therefore beneficial, and evolution will select for

public-memory strategy for dense environment 2.

Fourth, the agents encounter different states in dense and sparse environments. This

result can be seen by observing the black bands around the circles of sample strategies in

Tables 5.1 and 5.2, which represent the average percentage of time spent in each S1 and S2

state. Across all evolved strategies in dense environments, the S1 state where public and

private memory have low fitness (i.e. the first circle) is encountered 34% of the time on

average, whereas in sparse environments only 0.011%. Similarly, in dense environments

the evolved agents spent 69% of their time in the S2 state where the new point has low

fitness, but only 0.593% in sparse environments. The reason is that the fitness landscape

sinks more in dense environments, and by the end of the 100-step simulation, all points in

the search space have low fitness. In contrast, in sparse environments, there are often points

with high fitness that the agents can visit, and the agents evolve to do so. Therefore, evolved

agents spend most of their time in high-fitness states in sparse environments and low-fitness

states in dense environments.
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Fifth, a comparison of the PCA plots across the two tables indicates that the strate-

gies evolved in sparse environments vary more than those evolved in dense ones. For exam-

ple, in Environment 3 in Table 5.1 the evolved strategies are dispersed much more than their

counterparts in Table 5.2. It is interesting to analyze why. First, note that strategies located

on the left side (i.e. those that use public memory more often than private memory) mostly

differ in which actions they take when fitness of public memory is low (i.e. the first two

circles of sample strategies 1, 2, and 3), and when the points they visit have low fitness (i.e.

the fifth circle). Note further that such states are visited only rarely (i.e. less than 1% of the

time), as indicated by very little black band around the circles. The reason is that only the

agent itself changes public memory (not its opponents, which exploit with private memory),

and it places only high-fitness points in it. Therefore, public memory always has a high fit-

ness, and as a result, the first two states are rarely encountered and the corresponding parts

of the strategy (represented by the first two circles) are rarely used. Also, since low-fitness

points are usually not visited in sparse environments, the fifth circle is rarely used. Simi-

lar observations can be made for the strategies on the right side (i.e. those that use private

memory more often, such as sample strategies 4 and 5): They vary mostly in states where

private memory has low fitness (i.e. the first and third circle) as well as when visited points

have a low fitness (i.e. the fifth circle), and these are indeed states they rarely visit. Thus,

changes to those parts of the strategy do not affect the evolved agent’s performance, and

evolution results in diverse solutions for them. In contrast, in dense environments all states

are encountered at least 9% of the time on average: All parts of the strategy are therefore

useful, and there is less variance.

In Environment 3, opponents exploit private memory, and place the new points they

find in private memory, which makes the evolved agent the only one (among the eight agents

in the simulation) that changes public memory. Since each one of sample strategies 1, 2,

and 3 places new high-fitness points in public memory (i.e. the sixth circle), public memory

always has high fitness. Therefore, the first two states (which together represent public
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memory having low fitness) are not observed with those strategies. Thus, the corresponding

parts of the strategy (i.e. the first two circles and rows in the S1 table) are not used during

simulation. In contrast, if the evolved agent uses private memory instead of public, as

in sample strategy numbered 4 and 5, the unused states are different: The first and third

circles, which together represent the state of private memory having low fitness, do not get

used. Since low fitness points are usually not visited in sparse environments, the parts of the

strategy for new low-fitness points (i.e. the fifth circle and the first row of the S2 table) are

not used either. Thus, changes to those parts of strategy do not affect the evolved agent’s

performance. During evolution, strategy variants with differences in those unused parts

do arise, which leads to higher diversity in the evolved strategies in sparse environments.

On the other hand, since in dense environments all states are encountered at least 9% of

the time on average, most states are useful in each environment for the evolved strategies.

Since most parts of the strategies are used in dense environments, there is relatively lower

variance in evolved strategies, compared to sparse environments.

Sixth, the best strategies are not perfectly extreme, unlike the fixed hand-coded

ones, but often contain small slivers of probability for alternative actions. Such small dif-

ferences allow them to perform better. As can be seen in Figure 5.4, in each environment

the evolutionary optimization resulted in a strategy that performs at least as well as the best

manual strategy.

Thus, the results verify the hypothesis that custom-designed strategies are usually

more successful than generic ones. An interesting question is: Are there general strategies

that work well on all environments?

5.3 Evolving General Strategies

Two ways of evolving general strategies were tested: evolving in multiple homogeneous

environments and in a single heterogeneous environment. In the first approach, seven ho-

mogeneous environments were used, consisting of the six environments above, and an envi-
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Figure 5.4: Performance comparison among evolved strategies as well as the best manual
strategy from Figure 4.8 in sparse (N = 20) and dense (N = 10) environments. Statistical
significance is estimated between averages over 64 evolution runs. The same six environ-
ments are included as in Figure 4.8, as well as a seventh one where each opponent had
a different hand-coded strategy (the second and fourth strategies in this plot are identical,
hence the 1.0 p-value between those two bars). Strategies evolved for each environment
separately perform the best in all cases, while the general strategies evolved in multiple
environments are better than the best manual overall strategy in almost all cases. Machine
discovery is therefore a powerful approach to develop CMAS strategies.
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ronment with seven opponents that use an adapted RTTS strategy (which will be described

in the next section). During evolution, the fitness of each evaluated strategy was calcu-

lated by averaging the fitness score across those environments. The main disadvantage of

this approach is that it takes a very long time: Each strategy must be evaluated in seven

environments, using a total of 700 simulation steps.

The approach that uses a single heterogeneous environment avoids this problem.

There is one opponent of each type in this environment, allowing the agent to interact with

various types of opponents at once. Therefore, evaluation only requires one environment

and 100 simulation steps. As in previous experiments, there are seven opponents but now

each of them comes from a different homogeneous environment.

The strategies evolved using these two approaches can be seen in Tables 5.1 and

5.2 as Environments 7 and 8. Private memory was mostly preferred over public memory in

both sparse and dense environments. With the homogeneous approach, strategies evolved

in the sparse environment exploited private memory when private memory had high fitness

(Environment 7 in Table 5.1); otherwise, their behavior varied, including exploring private

memory while still sometimes exploiting it, as shown in the sample strategy. When the

environments were dense (Environment 7 in Table 5.2), this approach evolved strategies

that mostly explored, but also rarely exploited with private memory.

Similarly, in the heterogeneous approach (Environment 8), the evolved strategies

in the sparse environment exploited with private memory when private memory had high

fitness, but also explored when private memory had low fitness. On the other hand, the

strategies evolved in the dense heterogeneous environment always explored with private

memory. The likely reason is the same as in Section 5.2: There are opponents that use

public memory, making it less beneficial to use.

Performance of the strategies evolved using the two general approaches was com-

pared to that of the strategies evolved specifically for that particular environment, as well

as to the manual strategy that performed best in that environment. The results can be seen
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in Figure 5.4. In both sparse and dense environments, the performance of the strategy that

was evolved for that particular environment was always the best of the evolved strategies

(with p-value < 10−9 compared to the strategy with the second highest mean in most envi-

ronments, and < 10−3 in the rest), and that was always followed by the single strategy that

was evolved in multiple homogeneous environments, which in turn always performed bet-

ter than the one evolved in the single heterogeneous environment (with p-value < 10−7 in

all environments). Interestingly, the performance of the single heterogeneous environment

was on average within 1% of that of multiple homogeneous environments, even though it

required one-seventh of the evolution time. Thus, evolution in a heterogeneous environment

is an elegant and effective approach to finding general strategies.

Overall, the similarity in performance between the different learning approaches

suggests that it may be possible to evolve a single strategy that is effective in various en-

vironments, although the very best results are obtained by customizing the strategy to each

particular environment separately.

5.4 Comparison with Real-Time Tree Search

In order to highlight how different CMAS problems are from conventional search problems,

a real-time tree search (RTTS) algorithm was devised for the NK fitness landscape. RTTS is

real-time in the sense that it does not perform the whole search offline like A* does, but in-

stead alternates between planning and execution phases by performing a limited look-ahead

search at each state before selecting an action and moving to a new state. In this respect,

this algorithm is similar to e.g. Real-Time A* (RTA*; Korf, 1990), a well-known search

method in the single-agent tradition. Further, at each step RTTS, like RTA*, performs a

full exploitation search from the current point, i.e. considers all successor states reachable

by exploitative search actions. In contrast, CMAS also includes exploratory search actions,

which can potentially reach any point in the search space.

The reason for defining and employing RTTS instead of simply using RTA* is that
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the search domain of NK fitness landscapes differs in several ways from those for which

RTA* was designed: (1) The goal is not to reach a certain point in the search space as in

RTA*, but rather to follow a path that yields as much fitness as possible; (2) Since there is

no goal point, there cannot be a heuristic to calculate the cost of reaching a goal point; (3)

Avoiding loops is not a concern as long as the revisited points have high fitness; (4) The

search space is dynamic due to flocking of agents, which makes it less useful to keep a hash

table of observed states and their estimated costs for returning to those states. Thus, RTTS

can be seen as an adaptation of RTA* to CMAS problems.

The RTTS algorithm works as follows. Given an agent’s state s (in this case, the

last point the agent has visited), a score is calculated for each successor state s′. Since only

exploit actions are considered, a successor of a state is equivalent to a neighbor of a point

in the space. Each point has one neighbor s′i per dimension i (1 ≤ i ≤ N ), obtained by

flipping the bit of that dimension in point s. For each neighbor s′i, RTTS carries out a look-

ahead search starting from that state, and calculates the score of s′i by summing the fitness

of that point and the maximum fitness among those of the successors of s′i. The agent’s next

move is chosen as the exploitation action that results in the state with the maximum score

among all s′i.

In fact, what the RTTS agent does for each s′i is identical to what the agent does

for s itself. Thus, the agent’s search can be described as fixed-depth tree search. When

the depth of this search tree is set to two, the points that RTTS evaluates consist of point s

itself, all neighbors s′i of s (1 ≤ i ≤ N ), and all neighbors of all s′i. The number of these

points is 1 +N(N + 1)/2, which amounts to 56 and 211 points for N = 10 and N = 20,

respectively. Therefore, to keep the number of evaluations at a reasonable level, the RTTS

search depth was limited to two (Figure 5.5).

The results, compared to best evolved CMAS strategies, are shown in Figure 5.6.

Note that RTTS with search of depth one would only reach the nearest neighbors, amounting

to the always exploit strategy, with the small difference that all neighbors are considered
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Figure 5.5: Point evaluations with RTTS and an evolved strategy. The environment is 20-
dimensional and shown in a spherical visualization where elevation and brightness represent
fitness, and distance from the center point approximates the Hamming distance from it. The
211 search points that the RTTS agent evaluates in a single time step in order to determine
which action to take are shown as triangles. All of them are within two steps of the starting
point for the search, shown at the center. In contrast, evolved strategies perform eight point
evaluations on average (shown as squares), underscoring how different the CMAS strategies
are from classical single-agent search methods.

instead of stopping at the first neighbor that improves over the current point. At depth

two, however, RTTS is a distinctly different strategy from those considered so far; it is a

traditional single-agent search method adapted to the CMAS setting.

The differences between RTTS and CMAS methods are clear in the results. The

evolved agents as well as the manual CMAS strategies evaluate only eight points per step

on average (Figure 5.5). Thus, they are significantly more economical than RTTS in a high-

dimensional landscape (i.e. 26 times more in the sparse environments and seven times more
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in the dense ones). To make RTTS more comparable with the CMAS methods, it is possible

to match the number of points it considers with that of the CMAS methods, by limiting it to

one action every 26 time steps in the sparse environments and every seven time steps in the

dense ones. As can be seen in Figure 5.6, under such limited resources, RTTS makes very

little progress. Whereas the CMAS methods are designed to proceed with the information

gained from only a few points, RTTS expects to see the entire depth-2 search tree before

making a decision.

Interestingly, even without the resource limitation, RTTS is still not better than the

CMAS methods (Figure 5.6). The reason is that it is constantly mislead by the dynamic

landscape: The fitness value of a point that looked promising during the look-ahead may

diminish once the agent gets there, and it may miss points whose value increased.

Thus, CMAS problems are different from classical single-agent search problems,

and can be solved better by methods designed for such problems in mind, such as those

described in this dissertation.

5.5 Conclusion

This chapter focused on the optimization of strategies for the abstract NK domain. First,

a CPPN was described to encode strategies in a way that is easy and scalable to evolve.

Then, customized strategies were evolved for homogeneous environments that have the

hand-coded strategies from the previous chapter as opponents. Those evolved strategies per-

formed better in their environment than strategies evolved in other environments. Further-

more, general strategies were evolved, which perform better in each environment than other

strategies evolved in homogeneous environments, except for the strategy evolved specifi-

cally for that environment. Finally, evolved strategies were compared with a real-time tree-

search algorithm, and were shown to perform better when the tree-search algorithm was

limited to consider the same number of points as the evolved strategies. Moreover, in the

dense environments, the evolved strategies were better than even the unlimited version of
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Figure 5.6: Performance of the RTSS strategy compared to the best manual strategy (Sec-
tion 4.5) and the best evolved strategy (Section 5.2), in sparse (N = 20) and dense
(N = 10) environments. The non-limited version was based on a complete 2-ply lookahead
at each step, whereas the matched version evaluated the same number of points as the other
methods. The non-limited version is comparable to the other methods, but the matched
version is much worse. The assumptions of RTSS do not hold in CMAS problems, which
thereby require a different approach.
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the tree-search algorithm. Thus, this chapter showed that evolutionary computation is use-

ful in an abstract CMAS domain and provided a number of insights on what works and

when. A more concrete, real-world domain with human search agents will be described in

the next chapter.
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Chapter 6

A Concrete Domain: Social

Innovation

To study competitive multi-agent search in a domain that is more concrete than the abstract

NK domain of the previous chapters, a dataset of human behavior in a competitive multi-

agent search task was employed: a social innovation game created by Wisdom et al. (2013).

While the competition dynamics are not exactly the same as in the abstract simulation on

NK fitness landscapes, the human study serves as a real-world example and application of

competitive multi-agent search. This chapter describes the characteristics of this domain,

as well as results of human subject experiments conducted by Wisdom et al. The discussion

serves as a foundation for the next two chapters, which focus on modeling human behavior

and optimizing strategies in this domain (Chapters 7 and 8, respectively).

6.1 The Game Domain

The human dataset was collected under laboratory conditions at the Percepts and Concepts

Laboratory of Robert L. Goldstone at Indiana University1. The task that human subjects
1http://cognitrn.psych.indiana.edu/
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performed was a multi-player problem-solving game similar to a fantasy sports league: The

players tried to build a collection (or team) of icons that would score higher than the team of

other players (Wisdom et al., 2013). The subjects, who were undergraduate students, were

assigned to groups of size one through nine, in which they each played eight games.

A screenshot of the game’s graphical user interface can be seen in Figure 6.1. Dur-

ing games that consisted of 24 rounds, each player built a team of five or six members

(shown as icons on the interface) in each round. The players could add icons to their teams

by dragging an icon from a source, and dropping it onto one of the player’s own icons, re-

placing it. Icons could be copied in this manner from four sources: (1) player’s last team (a

retaining action), (2) player’s best scoring team up until that point in the game (a retrieval

action), (3) another player’s last team (an imitation action), or (4) the league of all available

icons (an innovation action). Depending on the game configuration, there were either 24 or

48 available icons from which the players could choose.

Besides individual icons, players were allowed to copy whole teams as well. To

make such a copy, the player needed to drag the score label above the source team, and

drop it onto their own team, replacing all icons in the team with those in the source team.

This type of action constituted a higher level action compared to copying a single icon. If

the player decided to copy multiple icons from a source, the team copy action saved them

time, which is important, since players only have 10 seconds to act in each game round.

In each game, a fixed number of points was assigned to each icon in the league.

Moreover, bonuses and penalties were assigned to a subset of distinct pairs of icons. These

point assignments, which were not known by the human subjects and were determined by

Wisdom et al. (2013) to make the game challenging by giving high bonuses to least valuable

icons and high penalties to most valuable icons, are shown in Figure 6.2 (a) and (b) for two

different game configurations. Each human subject played the first half of their game with

the 24-icon configuration, and the second half with the 48-icon configuration. The score of

a given team was calculated by adding the points for individual icons and any bonuses or
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Figure 6.1: The graphical user interface for the social innovation game (Wisdom et al.,
2013). The player’s current team is shown at the left hand side (labeled “Your Team”) and
the opponents teams at top right (labeled “The Other Teams”). The objective is to build a
team of icons that has a better score than the other players’ teams. To build a team, a player
can copy (i.e. drag and drop) icons from four sources: (1) player’s own team in the last
round, which is labeled “Last Round” and has its score shown above it, (2) the player’s best
team so far, which replaces the “Last Round” team on the user interface when the “Best
Score” label is clicked, (3) any of the other players’ teams, which are displayed to the right
with their scores above them, and (4) the league (i.e. pool) of all available icons, shown at
the bottom. The players can also copy any of the other teams in its entirety by dragging the
score label above the team, and dropping onto their own current team. The user interface
also displays the current round and the total number of rounds at the top right corner, and
the remaining time in the current round at the top center. In this dissertation, it serves as a
concrete domain on which to study how humans perform competitive multi-agent search.
(Used with permission from Robert L. Goldstone.)
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Figure 6.2: Points assigned to individual icons (boxes) and bonuses and penalties assigned
to a subset of icon pairs (ovals) for the two game configurations with leagues of (a) 24 and
(b) 48 icons.

penalties for icon pairs in the team. At the end of each round, subjects learned the score

of their own team, as well as of others’ teams, which they were able to use when deciding

their teams for the next round. However, in the first round, where their teams were randomly

assigned, they did not have the score information to make decisions. While the fixed point

assignments for individual icons and icon pairs did not change from game to game, icon

picture assignments were randomly shuffled before each game to prevent memorization of

those point assignments from affecting subjects’ strategies.

The next section gives a summary of the results from experiments done by Wisdom

et al. in this domain.

6.2 Summary of Experimental Results with Human Subjects

Wisdom et al. (2013) conducted two experiments in the social innovation game. The first ex-

periment explored which social learning strategies were employed by human subjects, and

how the difficulty or complexity of the problem space (i.e. league and team size) affected

those strategies. The second experiment evaluated how the visibility of the opponents’

scores affected their strategies.
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In the first experiment, Wisdom et al. identified several biases in human subjects’

strategies with respect to solution payoff, icon frequency among players, and solution sim-

ilarity. A bias toward greater potential payoff was apparent when imitation was employed.

Of all teams that had imitated icons, 94.3% of the time the imitation source was a single

player, and of those single-source imitations, 82% had the player with the highest score

as the imitation source and 10.7% the player with the second highest score. Moreover, the

score of the player who was the imitation source was higher than that of the imitating player

in 89.6% of the cases.

Another bias the subjects had was toward popular icons. The probability of imita-

tion or innovation for an icon was higher than chance levels only when the icon’s choice

frequency was above 0.5 (i.e. when a majority of other players possessed the icon). More-

over, subjects had a significant preference for icons whose choice frequency increased in

the previous round (i.e. positive choice momentum). Subjects also had a small but signif-

icant bias toward imitating players whose teams were more similar to their own previous

team than those of other players.

Other results demonstrated effects of game round on the subjects’ behavior. The

proportion of actions (i.e. icon sources) that the players employed changed somewhat with

the round (Figure 6.3). As the game progressed, retention and retrieval increased slightly,

while imitation and innovation decreased but overall the proportion of actions remained

relatively stable. On average, subjects imitated 9.8%, innovated 13.7%, retained 73.9%,

and retrieved 2.6% of the time. That is, subjects were in general conservative in their

gameplay, but became even more so over the course of 24 rounds.

Scores of players also changed with round. They kept increasing until the end of

the game across all groups sizes (i.e. one through nine; Figure 6.4 top), which means that

they were able to adopt their strategies to the hidden point values. On the other hand, game

round had the opposite effect on guess diversity, i.e. the proportion of icons that at least one

player had in a group of a given size in a given round, normalized by an expected value
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and Retained more, and Explored and Retrieved less. All trends noted above were mono-
tonic; that is, there were no thresholds or inflection points beyond which the relationships
changed.

The mean choice source proportions for guesses that resulted in score improvements
and those that did not are shown in Table 4. These proportions indicate that Exploration
was far more common in improvements than non-improvements. All other choice sources
are less common in teams that were improvements, significantly so in the case of Imita-
tion and Retention.

Fig. 10. As participant group size increased, mean proportions of Retention and Imitation increased, and
Exploration and Retrieval decreased.

Fig. 9. Mean proportions of Retention and Retrieval increased and Imitation and Exploration decreased as
more rounds were played within a game. Imitation jumps in the second round because participants can see
their own and peers’ scores for the first time.

1400 T. N. Wisdom, X. Song, R. L. Goldstone / Cognitive Science 37 (2013)

Figure 6.3: Changes in proportion of actions taken by human subjects over the course of
24 rounds. Retention was by far the most popular action, and the proportion of actions
remained rather constant. Retention increased slightly with round, together with retrieval,
whereas imitation and exploration (i.e. innovation) dropped. These observations suggest
that the strategies they employed were rather stable, conservative, and became even more
so over time. (Reproduced from (Wisdom et al., 2013) with permission. Copyright c© 2013
Cognitive Science Society, Inc.)

for this proportion for random players in a group of the same size. There were a consistent

gradual drop for all group sizes (except size one, where guess diversity is always 1.0 by

definition; Figure 6.4 bottom), suggesting that they were discovering increasingly similar

solutions over time.

Similar effects were observed with increasing group size: Scores generally in-

creased, while guess diversity decreased. Group size also had an effect on action (or icon

source) proportions: With larger groups, retention and imitation was higher, whereas inno-

vation and retrieval was lower. Just like game round and group size, game order (i.e. which

game out of the eight games for each human subject is being played) increased score and

reduced guess diversity.

To see how choice source strategy affected score, Wisdom et al. grouped human

subjects by which action (i.e. icon source, if any) they chose with a probability that is

at least one standard deviation above the mean action choice proportion across all sub-

71



2.3.2.1. League size/difficulty: Participants achieved mean overall scores (averaged across
all rounds) and mean final scores for each condition as shown in Fig. 2, with overall dif-
ferences between conditions shown in Table 3.

2.3.2.2. Rounds, game order, and group size: Linear mixed-effects regression models
were used to examine trends across rounds, game order, and group size for each

Fig. 6. Mean score increased and mean guess diversity decreased as more rounds were played within a
game; stronger effects were observed for larger participant group sizes.

Fig. 5. Imitators’ previous teams showed greater similarity to the teams they imitated than to those they did
not imitate.

1396 T. N. Wisdom, X. Song, R. L. Goldstone / Cognitive Science 37 (2013)

Figure 6.4: Over the course of 24 rounds, scores of human subjects increased for all group
sizes, whereas the diversity of their icons decreased (except for groups of size one, for
which guess diversity is always 1.0 by definition). These results suggest that the players
were able to learn the underlying point values to some extent, and that they converged to
similar solutions. (Reproduced from (Wisdom et al., 2013) with permission. Copyright
c© 2013 Cognitive Science Society, Inc.)
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2.4. Experiment 1 discussion

2.4.1. Specialized strategies
Results showed evidence for all expected social learning strategies. Payoff bias was

shown in the tendency to imitate peers with higher scores. The small proportion of Imita-
tion of non-top-ranked or even lower scoring peers were not explained by similarity
between their guesses or other factors and were likely due to random errors.

Frequency bias was shown in the tendency to imitate solution elements according to
their frequency in peers’ solutions. The tendency for frequency-biased imitation to rise
above the chance level only for solution elements with frequency greater than 50% is
consistent with a copy the majority strategy, and furthermore with a strict definition of
“conformity”: not merely a tendency to follow the majority but an exaggerated tendency
to do so, sufficiently strong to increase the size of the majority over time (Efferson,

Table 4
Mean (and standard deviation) choice source proportions for improvement and non-improvement guesses

Choice Source Imitation Exploration Retention Retrieval

Proportion in
non-improvement
guesses

9.9% (19.4%) 12.9% (14.6%) 74.9% (20.7%) 1.7% (7.4%)

Proportion in
improvement
guesses

7.9% (16.3%) 18.2% (11.4%) 72.2% (16.4%) 1.5% (6.4%)

Difference 1.9%**
t(504) = 2.72

!5.3%***
t(549) = !10.32

2.7%**
t(547) = 3.68

0.2%
n.s.

***p < .0001, **p < .01, *p < .05.

Fig. 11. Mean score versus choice source strategy, showing that cautious and imitative strategies resulted in
the best overall performance.

T. N. Wisdom, X. Song, R. L. Goldstone / Cognitive Science 37 (2013) 1401

Figure 6.5: Scores of human subjects grouped by their choice of a dominant action. Sub-
jects who chose to do imitation and retention dominantly scored better than those whose
dominant action was retrieval or exploration (i.e. innovation). (Reproduced from (Wisdom
et al., 2013) with permission. Copyright c© 2013 Cognitive Science Society, Inc.)

jects. Subjects for which no such action existed were considered in a separate mixed group.

Figure 6.5 shows that the retain-dominant group scored the highest, with the mixed and

imitate-dominant groups above average, while dominantly retrieving subjects scored below

average, and innovate-dominant subjects scored the lowest.

Wisdom et al. also investigated the effects of game difficulty by utilizing the two

game configurations mentioned in Section 6.1: one with a 24-icon league and five-icon

teams, and another with a 48-icon league and six-icon teams. With the more difficult config-

uration, scores, guess diversity, and proportion of innovation was lower, whereas retention

was higher.

The second experiment of Wisdom et al. evaluated whether knowledge of the op-

ponents scores affected the players’ strategies. They found that when subjects could not see

the scores of other players, their average scores and final scores were lower, and their guess

diversity was higher, compared to when scores were visible. Moreover, when the scores

were not visible, the bias for icon frequency was in the opposite direction to that with vis-

ible scores: There was a preference for less popular icons when subjects were imitating or
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innovating. While these results are interesting and can be incorporated in the CMAS model,

the experiments in this dissertation focused on the visible case. Therefore, only data from

the first human subject experiment will be utilized, as is described in the next section.

6.3 Data Collected in Human Subject Experiments

The data contained information about 39 game sessions such as number of participants and

date. For each of the eight games in each session, the data described the game configuration:

the values of individual icons and bonus or penalty values for icon pairs for each game, the

size of players’ teams, and the size of the league of all available icons.

The rest of the data consisted of the details of the gameplay. For each player in

each round of each game, the player’s score, normalized score (based on the minimum and

maximum possible score with the game’s configuration), and the IDs of each icon in the

player’s team, as well as each icon’s source were included. The icon source corresponded

to the four icon actions, and was the source player’s ID in the case of imitation. Even though

the graphical user interface of the game allowed players to copy whole teams from another

player or from their own past teams, the data did not contain such team-level actions.

This data is detailed enough so that neural network models can be trained to imitate

each individual player in the dataset. These models can then be used to create computational

environments where the strengths and weaknesses of the different strategies can be charac-

terized systematically, their effectiveness measured quantitatively, and optimal strategies

discovered.

6.4 Conclusion

This chapter provided details for a concrete domain for social innovation in the form of

a multi-player game. Experimental results from a study involving human subjects playing

this game were summarized, which identified several biases, related to solution payoff, icon
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popularity, and solution similarity. Other results in the same study showed effects of group

size, game order, and current game round on score, guess diversity, and action proportions,

as well as effects of dominantly preferred actions over score. These characterizations of

human gameplay will be used in the next chapter to evaluate how good the learned models

of human players are. The data collected from the human subjects’ games, which included

the individual team choices of all players, were also described. This dataset will be utilized

in the next chapter to train models of individual human players. These models will be in turn

used in Chapter 8 to demonstrate that evolution can be used to discover optimal strategies

for this domain.
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Chapter 7

Characterization of a Concrete

Domain: Social Innovation

The human subject data described in the previous chapter provide a foundation for study-

ing competitive multi-agent search in the real world. The data will be used to build neural

network models of individual subjects in the social innovation game in this chapter. They

will then be simulated extensively to characterize what works in that game, including dis-

covering optimal strategies automatically through neuroevolution.

Motivation for modeling human subjects in the social innovation domain is given

in Section 7.1, while Section 7.2 introduces a suitable neural network architecture for the

models, which is trained with the data described in Section 7.3. The trained models are

evaluated using several distance objectives as summarized in Section 7.4. Two experiments

are carried out to determine the best modeling approach (Section 7.5) and to find out the

effects of training time on the trained models (Section 7.6). The result is a set of player

models that will be used in the next chapter to characterize the human subjects and to

determine optimal strategies in this domain.
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7.1 Motivation

The social innovation domain described in the previous chapter, which is based on a human

game, provides a laboratory setting in which competitive multi-agent search in humans

can be characterized. Although the experiments of Wisdom et al. (2013) describe human

behavior in this game well qualitatively, more data is necessary to characterize the strategies

they use quantitatively. One way to do it is to run many subjects and repetitions. The time

and cost of such experiments is prohibitive, however. An alternative taken in this chapter is

to use the existing data to construct computational models of the human subjects, and then

run the extensive experiments with the models.

There are two advantages to building human models. First, it is much more practical

to place models of human subjects in hypothetical situations than doing the same with the

subjects themselves. Time and cost become significant obstacles in experiments, which

using models can easily overcome. It is also much easier and faster to optimize strategies

against models of human subjects than against the human subjects.

Secondly, the dataset for human subjects’ gameplay is limited. Using a model of

human subjects, one can collect gameplay data from a larger number of games in order

to analyze the behaviors of the corresponding human subjects. For instance, hypothetical

situations that do not exist in the human subject groups in the dataset can be simulated using

such models, which would allow experiments that cannot be done otherwise.

7.2 Two-tiered Neural Network Architecture

As described in Section 6.1, the user interface for the human subjects permitted two lev-

els of action: replacing the player’s whole team and replacing individual icons (i.e. team

members). When a player performs a team-level action, changes due to the player’s earlier

actions in the same round are reverted, since replacing the whole team overwrites all team

members. Therefore, any action taken before the last team-level action (if any) in a round
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has no effect on the player’s score for that round. Moreover, any action taken on an icon

reverts the effects of other icon-level actions on the same icon, since it overwrites the corre-

sponding team member. So, for each icon, only the last icon-level action performed on that

icon in each round has an effect on the player’s score for that round. Thus, for each player

and round, the player’s last team replacement (if any) and the last replacement of each team

member following that team replacement (if any) is sufficient to calculate the player’s score

at the end of that round.

Therefore, a strategy that makes at most one team replacement, followed by at most

one replacement for each team member is sufficient to model a player’s strategy of picking

a team in each round. Accordingly, a two-tiered artificial neural network model was created

to model a player: The outputs of two separate neural networks were interpreted as high-

level (i.e. team-level) and low-level (i.e. icon-level) actions (Figure 7.1).

For the team action network, two features were used to specify the team-level game

state for a given player: (1) elapsed game time (i.e. current round’s number), which allows

for behavioral differences between beginning of the game, mid-game, and end-game, and

(2) the player’s score relative to the highest score among the opponents, which encodes how

well the player is doing in the current game.

For the icon action network, two features were used to encode the icon-level state

for a given player and one of its icons: (1) the icon’s popularity across all players (i.e. how

many players have that icon), and (2) the icon’s age (i.e. how many rounds the icon has

been kept by the player without being replaced). Since the team-level state is also useful in

deciding which actions to take on individual icons, the two inputs for the team-level state

were also provided to the icon action network. All team- and icon-level state feature values

were normalized to the [-1,1] range before being provided to the networks as inputs.

There were three different sources from which a whole team can be copied: (1) the

player’s best team so far, (2) another player’s team from the last round, and (3) the player’s

own team from the last round. Since each player starts each round with their team from the
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Figure 7.1: Human subject models consist of two separate neural networks: (1) a network
with two inputs (i.e. current game round and player’s score relative to the best opponent)
and three outputs (i.e. imitation, retrieval, and no action) for team actions, and another net-
work with four inputs (i.e. current game round, player’s score relative to the best opponent,
icon’s popularity, and icon’s age) and four outputs (i.e. imitation, innovation, retrieval, and
retention or no action) for icon actions. Both networks have a bias input, and the same
number of hidden nodes as their output nodes. The icon action network is run for each icon
of the player’s team in each round. The network outputs are normalized and used as action
probabilities for that icon, while the team action network is run only once per round with the
outputs used as team action probabilities after normalization. In this manner, the network
for icons is shared among all icons of the player. This approach allows more training data
to be used for the icon network than would be available with six separate networks for each
icon position.

last round, picking the third source effectively cancels the changes made so far. Therefore,

there are effectively three possibilities for team-level actions: copying own best team, copy-

ing an opponent’s team, and not doing any team copying. These actions correspond to the

three outputs of the team action network in Figure 7.1. Those network outputs are normal-

ized, and then interpreted as the probability of performing the corresponding team actions.

That is, the agent chooses the action in each round probabilistically among those actions,

rather than deterministically picking the action with the maximum output activation.

At the icon level, players can copy icons from four different sources: (1) another
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player’s team from the last round, (2) the pool of all icons, (3) the player’s own team from

the last round, and (4) the player’s best team so far. These four sources correspond to

the four actions mentioned in Section 6.1: imitation, innovation, retrieval, and retention,

and map to the four outputs in the icon action network in Figure 7.1. As with the team

action network, the icon action network’s outputs were normalized, and used as icon action

probabilities. However, unlike the team action network, the icon action network needs to

be run for each icon separately, utilizing its two icon-specific inputs. It will then generate

an icon-specific decision: which action to take for that particular icon. On the other hand,

in both team and icon action networks, the number of hidden nodes was chosen to be the

same as the number of outputs (i.e. three and four, respectively).

The next section will describe the training data used in this task. The two networks

are trained to model individual human subjects using the supervised backpropagation train-

ing method.

7.3 Training Data

The training data for constructing the models consisted of input-output pairs for the team

and icon action networks. These pairs were collected from the dataset of gameplay among

human subjects. Only the games with eight or nine human subjects were included, because

games with fewer players had lower scores, and including them would make comparing

scores with models less straightforward. For each human group that was included, only

the last game was used for training models because the last game had the highest score on

average (as mentioned in Section 6.2).

Team actions taken during the human subjects’ games were not recorded in the

gameplay data. Therefore, they had to be inferred from the data by considering individual

icon actions’ sources, which were included in the gameplay data. If a majority of a subject’s

icons in a round came from the same source, then the subject was assumed to have copied

the whole team from that source, and changed the remaining minority of the icons (if any)
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afterward. In that case, those majority icons were considered to be retained after the team

action, which became their icon action in the training data for that round.

The values for these team- and icon-level state features were calculated for each

round, and paired with the source choices for the player’s team and icon actions in that

round. Thus, the number of input-output pairs for the team action network was equal to

the number of rounds, whereas the icon action network had six times as many pairs, since

teams had six icons. The input-output pairs for team and icon actions were then used to train

models, which were evaluated with the distance objectives described in the next section.

7.4 Distance Objectives

The more similar a model’s behavior is to a given human subject, the more useful that model

will be as a replacement for that subject. In order to quantify this similarity, several distance

objectives were used to measure the difference between the behaviors of the model and the

human subject on whose gameplay data the model was trained.

For each model, 200 games were simulated where one of the players was the model.

To make comparisons of different sets of models fair, a consistent set of opponents was used

in these games. They consisted of simplistic models with fixed action probabilities derived

from the human gameplay data. Each of the following distance objectives was averaged

over all games:

• Normalized absolute score: Score of the evaluated player normalized to the [0, 1]

range, averaged across rounds.

• Normalized relative score: Difference in normalized absolute score between the

evaluated player and its best opponent, averaged across rounds.

• Team imitation ratio: Ratio of the number of copying of an opponent’s whole team

over the number of rounds.
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• Icon imitation ratio: Ratio of icons that were individually copied from an opponent.

• Innovation ratio: Ratio of icons that were copied from the pool of all available icons.

• Team retrieval ratio: Ratio of the number of copying of the player’s own best past

team over the number of rounds.

• Icon retrieval ratio: Ratio of icons that were individually copied from the player’s

own best past team.

• Retention ratio: Ratio of icons that were not changed.

• Icon consistency: Number of rounds icons were kept in a player’s team, averaged

across all uses of icons by the player.

In two experiments, models were trained for each player and evaluated according

to these distance objectives.

7.5 Experiment 1: Comparison of Modeling Approaches

The input-output pairs generated from gameplay data for team and icon actions were used

to train the neural networks described in Section 7.2 with the goal of modeling each human

subjects’ behavior as close as possible. Since the actual actions taken by the players are

known, supervised learning techniques could be used. The standard technique is backprop-

agation, and it was found to be sufficiently powerful in this task.

The two-tiered neural network models were compared to the corresponding mod-

els created with two other modeling approaches based on human gameplay data, as well

as a baseline model with uniform action choice. More specifically, four models were thus

compared: (1) the baseline model where icon actions are picked based on fixed and uni-

form probabilities (i.e. 0.25 for each of the four icon actions), (2) another simplistic model

with fixed probabilities, but with each action’s probability set as the human subject’s usage
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ratio for that action, calculated from the data, (3) a one-tiered neural network model that

performs icon actions but not team actions, and (4) the two-tiered neural network model,

which performs both team and icon actions.

The training data format for the one-tiered network models was similar to that for

the two-tiered ones, except that there were no team actions, and therefore no icons were

retained due to an earlier team action in the current round. Both types of neural network

models were trained with backpropagation using 500 epochs, using a learning rate of 0.1,

momentum of 0.1, and weight decay of 0.01. All compared models chose actions proba-

bilistically based on the relative activation of the output units.

The results are shown in Figure 7.2, which compares the four models on average

over all 34 subjects, based on the distance objectives from the previous section (smaller

values mean that the models are closer to human subjects). Since the baseline model is

not based on the data, it was significantly outperformed by the three other model types in

six out of nine objectives (p-value < 10−5). Similarly, the second model type (i.e. the

one with fixed action probabilities derived from the gameplay data) was significantly worse

than the two-tiered neural network models (p-value = 0.029) and somewhat worse than the

one-tiered neural network models (p-value = 0.075) in the absolute score objective, and

somewhat worse than both types of neural network models in the relative score objective

(p-value = 0.087 and 0.076 for one- and two-tiered models, respectively). However, the

second model was the best one for the innovation and retention ratio objectives, which is

not surprising since that model was based on the action ratios from the human subjects.

While there was no significant difference between the two neural networks in in-

novation ratio, icon consistency, or the two score objectives, they did differ in three other

distance objectives, including team and icon imitation ratio (i.e. first and second on the sec-

ond row in Figure 7.2). The two-tiered models were significantly closer to human subjects

along these objectives than the other model types (p-value < 10−4). The main reason for

the difference in team imitation ratio is that the other models did not perform any team ac-
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Figure 7.2: Different modeling approaches compared using several distance objectives.
Values show average distance of the models to the corresponding human subject. Smaller
values are better. Each distance objective is averaged across the human subjects. Error bars
indicate one unit of standard error of the mean. Note that the y-axes have different scales.
Related objectives are grouped in surrounding boxes. The two-tiered neural network models
do significantly better than all others in team and icon imitation ratio objectives, whereas the
difference with the one-tiered networks are not significant in other objectives. The reason
why two-tiered network models do not do better in retrieval ratio objectives is that retrieval
is done very rarely by humans, and therefore insufficient data for team and icon retrieval
actions. The simpler models (i.e. second bar) that are based on probabilities from human
gameplay data perform better in innovation and retention ratio objectives, but they cannot
perform team and icon actions separately, unlike the two-tiered network models.
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tions, and therefore got the same result on team action ratio objectives (i.e. “team imitation

ratio” and “team retrieval ratio”). However, unlike in the team imitation ratio, two-tiered

models did not perform significantly better in the team retrieval ratio. A likely reason is that

human subjects rarely performed that action: 27 out of 34 subjects did not do team retrieval

at all, while the others did very rarely. The two-tiered models learned to rarely perform that

action, which was not significantly different from not doing it at all.

While the two-tiered models were significantly worse in the retention ratio (p-value

< 0.01), the advantage of two-tiered network models in the two imitation action ratio ob-

jectives and in their support for team actions make the two-tiered network models a better

choice for modeling human subjects than the one-tiered ones.

After choosing a neural network model architecture, there is still the question of

how long the training should be, which is the focus of the next section.

7.6 Experiment 2: Effect of Number of Training Epochs

Training for too long may overfit the models to the training data, which reduces the qual-

ity of generalization to unseen situations. Techniques such as early stopping and cross-

validation based on RMS error are commonly used in machine learning to avoid overfit-

ting. However, they do not take into account other objectives that might be of importance,

such as the distance objectives described above. Indeed, in preliminary experiments using

cross-validation, the resulting sets of models did not show an advantage over the two-tiered

network models in any of the distance objectives, and performed worse in some of them.

Therefore, a comprehensive experiment was done to determine the effect of training dura-

tion on the various distance objectives.

Figure 7.2 shows the distance to human subjects using the same objectives as in

the previous section, where the number of training epochs was varied from 50 to 1000 in

increments of 50. Several objectives were not significantly affected by training duration,

such as “absolute score”, “relative score”, “icon consistency”, and “icon retrieval ratio”.
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Figure 7.3: Effect of number of training epochs on the distance objectives. Smaller values
are better. Each distance objective is averaged across the human subjects. Error bars in-
dicate one unit of standard error of the mean. Note that the y-axes have different scales.
Objectives such as “team imitation ratio” and “innovation ratio” showed an upward trend
with increased training, whereas “icon imitation ratio”, “team retrieval ratio” , and “reten-
tion ratio” went down. The remaining distance objectives were not affected significantly by
the length of training. Therefore, a moderate number of training epochs is a good compro-
mise given these distance objectives.
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On the other hand, “team imitation ratio” and “innovation ratio” showed an overall increase

with increasing number of training epochs, whereas “icon imitation ratio”, “team retrieval

ratio”, and “retention ratio” objectives had the opposite trend.

While it is difficult to pick a best model due to the multiple objectives, based on

the trade-off that stems from the opposite trends in the objective values, the set of models

trained with a moderate number of epochs, such as 500, can be considered as a good com-

promise. Therefore, that set of models was used in the next chapter as opponents against

which the strategies were optimized.

7.7 Conclusion

This chapter dealt with the question of how to best model human subjects in the domain of

a social innovation game. It introduced several distance objectives to quantify the similarity

of a given model to the human subject on which it was modeled. The first of two experi-

ments investigated which modeling approach is best in terms of those objectives, and found

that models with two-tiered neural network were better than one-tiered network models

and models based on fixed action probabilities derived from the gameplay data. The sec-

ond experiment examined the effect of training time (i.e. number of training epochs) on

the resulting models, again, using the same distance objectives, and discovered a trade-off

between two subsets of the considered objectives with opposite trends.

While modeling human subjects is useful in its own right, it does not provide a clear

understanding of how good human subjects really are. What strategies perform best in this

domain, and are they different from those that the humans employ? The next chapter aims

to shed light on this question by developing strategies that are optimized for this domain.
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Chapter 8

Optimization of Social Innovation

Whereas the goal of the previous chapter was to understand and model human behavior in

the social innovation game, the goal of this chapter is to find out whether strategies exist

that are better than those that humans use. Moreover, the goal is to identify what works best

against different types of opponents. For instance, do we need different strategies against

opponents that imitate a lot, and against those that do more innovation to perform as well

as possible? Also, can we find strategies that generalize to some extent? This chapter at-

tempts to answer such questions using evolution as the optimization method. The network

architecture for Chapter 7 was first simplified so that it could be more easily evolved. Three

experiments were then conducted: First, in order to characterize environments and success-

ful strategies, strategies were evolved against a uniform set of opponents of a certain type.

Second, general strategies were evolved using multiple environments for fitness evaluation.

Third, in order to show that better strategies can be discovered in complex real-world envi-

ronments, they were evolved in the game groups of the human subject study.

Section 8.1 describes the network architecture that is used to represent strategies.

This architecture is optimized via evolution, as detailed in Section 8.2. The experimental

results for evolving strategies against a single opponent type and evolving general strategies

are analyzed in Sections 8.3 and 8.4, respectively. Section 8.5 describes the results from an
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experiment with an evolutionary setup that has more realistic set of opponents, taken from

the game groups of the subjects in the human study.

8.1 Two-tiered Combined Neural Network

In the previous chapter, two separate neural networks were used to model human subjects.

However, if such a model was used for evolving strategies, hidden network nodes that

represent useful states would have to evolve separately twice (i.e. once per neural network).

For instance, a hidden node may represent the state where the game is about to end and the

relative score of the agent is lower than the player with the highest score, and the output

of this hidden node may be useful for both high-level and low-level actions. Sharing such

hidden nodes between the two network tiers would allow neural network representations to

be evolved once and used for both high-level and low-level actions. Therefore, employing

a combined neural network can reduce the search time for a neural network solution.

Thus, for the goal of optimizing strategies, a combined two-tiered neural network

architecture was chosen to represent strategies. As in the CPPNs evolved for the abstract

domain in Sections 5.2 and 5.3, the neural network nodes had either a sigmoid or a Gaussian

function as their activation function. However, unlike the CPPNs in the abstract domain, the

networks were not used to generate a pattern. As seen in Figure 8.1, high-level (i.e. team-

level) actions and low-level (i.e. icon-level) actions were generated by separate outputs

of the same neural network, as opposed to outputs of two separate neural networks as in

Section 7.2. The next section details how these networks were optimized for the social

innovation game domain.

8.2 Experimental Setup

As was done in Chapter 5, the strategy for a single agent was optimized given an environ-

ment with a fixed set of opponents. As described in the previous section, a single neural

89



OT1 OT2

I1 I2 I3 I4 B

OT3 OI1 OI2 OI3 OI4

Figure 8.1: An example combined two-tiered neural network, with four inputs (i.e. current
game round, player’s score relative to the best opponent, icon’s popularity, icon’s age), three
outputs for team actions (i.e. imitation, retrieval, and no action), and four outputs for icon
actions (i.e. imitation, innovation, retrieval, and retention or no action). The outputs for icon
actions are normalized and used as action probabilities for each icon of the player’s team,
while team action outputs are normalized separately and used as team action probabilities.
In this design, the team and icon networks are combined, as opposed to the separate net-
works in Figure 7.1. Hidden nodes representing game states that are useful for both team
and icon actions are shared, and do not have to be evolved twice.

network was used to represent a strategy, which made it straightforward to, again, use NEAT

to optimize it.

Strategies were evolved in environments with eight opponents, each of which was

the model of a human subject, created using supervised learning as described in Chapter 7.

Just as in Chapter 5, NEAT ran for 500 generations for each environment, with a population

of size 100, and with 64 repetitions for each evolutionary setup.

The fitness of each evolved strategy was evaluated by running a simulation where

the first agent used the evolved strategy and the opponents used a fixed strategy chosen to

create a particular environment. The fitness was calculated as the normalized score of the

first agent averaged across 200 games. As in human subjects’ games, at the beginning of

each game, each player had a team that was randomly selected from the league. Moreover,
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as in human games, icon memorization was effectively prevented, since agents did not

guess or keep scores for individual icons or pairs of icons. The next section describes

the first evolutionary experiments conducted with this approach, where the environment

consisted of uniform opponents of a certain type. Section 8.4 then extends to heterogeneous

opponents.

8.3 Experiment 1: Evolving Specific Strategies

In order to see which strategies work well in different social innovation game environments,

several evolutionary setups were created, each with a different set of opponent models.

For each of the four icon actions (i.e. imitate, innovate, retain, and retrieve), the model

for the subject that used that action the most was selected as the dominant model for that

action, among the models for subjects who took part in games with at least five players.

For each action, eight copies of the corresponding action-dominant model were used as the

opponents in an environment, resulting in four homogeneous environments, similar to the

homogeneous environments of Section 5.2.

To make it easier to examine evolved strategies, the corresponding networks were

used as CPPNs to generate patterns to fill state-action probability tables, similar to the tables

introduced in Section 3.7 for the abstract NK domain. The possible range of input values

for the four CPPN inputs were discretized into three coarse values for the time input, and

two for the remaining inputs: (1) beginning of game, mid-game, or end-game; (2) low or

high score relative to the best opponent; (3) low or high icon popularity among players; and

(4) old or new icon. Combinations of these input values correspond to 24 possible discrete

game states for each icon. For each state, the agent had a choice of three team actions for

the whole team, as well as four icon actions for each icon. As a result, from each evolved

CPPN, a 24× 7 state-action probability table was obtained.

To identify the differences between strategies evolved in different environments,

action probabilities were compared using Student’s T-test, separately for each action and
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for each of the 24 discrete states. This comparison resulted in 24 p-values for each pair

of strategies median p-value was then used to determine whether strategies evolved in an

environment had significantly higher or lower probabilities than those evolved in another

environment.

Strategies evolved in the environment with imitate-dominant opponents do signif-

icantly more innovation (with median p-value < 10−3) and less imitation (with median

p-value for icon and team imitation 0.0134 and 0.0454, respectively), as well as more re-

trieval (with median p-value 0.0287). In such an environment, the source of imitation is

always the highest-scoring player. Therefore, lower imitation and higher innovation and

retrieval lead to higher diversity, which increases the chance of finding icons with higher

score, beating the opponents.

On the other hand, strategies evolved with innovation-dominant opponents had sig-

nificantly higher imitation at the team level (median p-value = 0.022) compared to strate-

gies from other homogeneous environments, while there was no significant difference in

icon imitation. A possible explanation is that when all other teams are innovating a lot (i.e.

replacing their icons with random ones from the pool), team imitation is more reliable than

icon imitation. Strategies evolved against retention-dominant opponents have increased

team imitation as well, but it is not as significant (median p-value = 0.066).

With retrieve-dominant opponents, evolved strategies innovated significantly less

(median p-value < 10−4) than in other environments, and imitated somewhat more at the

icon level (median p-value = 0.094). Innovation is getting a completely random icon,

whereas icon imitation copies a random icon from the best-scoring opponent’s team, which,

in this environment, opponents are likely to have icons from the opponent’s best team so far.

Therefore, in this environment innovation is less likely to contribute positively to a player’s

score than imitation.

The 24 × 7 action probability tables were also used to examine the distribution of

strategies. Similar to the approach in Section 5.2, the probability tables of evolved strategies

92



were treated as 168-dimensional vectors, and reduced to two-dimensional points via PCA.

The first two components captured 83% of the variance in the high-dimensional vectors, and

therefore two-dimensional PCA plots were used to visualize the strategies. Table 8.1 shows

the distribution of the best strategies from the 64 evolutionary runs for each environment.

The diagonal line at the left of the PCA plots represents maximum icon imitation

(i.e. with probability 1.0), and the one at the right, corresponds to maximum team imitation;

therefore there are no points below those two lines. The result that the strategies evolved in

imitation-dominant opponents imitated less means that the points (i.e. strategies) are further

away from the diagonals than in the other environments. The relatively high team imitation

evolved against innovation- and retention-dominant opponents can also be observed in these

plots: there is a strong cluster around the diagonal line at the right representing maximum

team imitation in these environments. Similarly, for strategies evolved against retrieve-

dominant opponents, relatively more numerous points can be seen near the diagonal at the

left, which corresponds to higher icon imitation.

Performance of the evolved strategies across various environments is shown in Fig-

ure 8.2. For each homogeneous environment, the strategies evolved in the same particular

environment significantly outperformed the ones evolved in other environments (p-value

< 10−19). This result is similar to that of Figure 5.4 and shows that there is indeed value

in optimizing the strategies for a particular environment. Strategies deployed in foreign en-

vironments performed at similar levels with each other, except for the ones evolved against

imitate-dominant opponents, which performed significantly worse than the others (p-value

< 10−4). A possible explanation is that the increased innovation is actually a handicap in

those other environments.

While homogeneous environments are useful in evolving strategies to counter a spe-

cific type of opponent, a different approach is needed for evolving general-purpose strate-

gies that can be used against different opponents, which will be the focus of the next section.
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Environment PCA for All Evolved StrategiesId Opponents

1 Imitate-dominant (8)

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

2 Innovate-dominant (8)

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

3 Retain-dominant (8)

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

4 Retrieve-dominant (8)

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

5
Heterogeneous
(2 opponents from each of
Environments 1-4 above)

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

6
Multiple homogeneous
(Fitness averaged over
Environments 1-4 above)

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

Table 8.1: Strategies evolved in homogenous and heterogeneous environments. Each PCA
plot shows 64 evolved strategies. The PCA dimensions are shared across all evolved strate-
gies. The diagonal boundary lines at the bottom left and bottom right represent maximum
icon imitation and maximum team imitation, respectively.
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Score against Homogeneous (Innovate-dominant) Opponents
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0.66
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Score against Homogeneous (Retain-dominant) Opponents

0.58

0.60

0.62
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0.66

0.68

0.70
Score against Homogeneous (Retrieve-dominant) Opponents

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Score against Heterogeneous Opponents

Figure 8.2: Performance comparison among strategies evolved in a single homogeneous,
multiple homogeneous, and a heterogeneous environment. Each row shows the perfor-
mance of strategies in one environment. Each column shows the average score of 64 strate-
gies evolved in the environment indicated by the legend when they are evaluated in the
environments that correspond to rows. Thus, the bars in the diagonal starting from top
left show the performance of strategies that were evolved in the same environment as the
one in which they are evaluated. Each group of evolved strategies on the diagonal per-
form significantly better than the other evolved strategies in the same row. Moreover, the
strategies evolved in multiple homogeneous environments perform significantly better than
others in all homogeneous environments (except the strategies evolved in the evaluation en-
vironment). Thus, evolution can produce customized strategies for given homogeneous and
heterogenous environments, as well as general strategies that perform better than others in
multiple environments.
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8.4 Experiment 2: Evolving General Strategies

In order to evolve general strategies, two more evolutionary setups were employed, similar

to those in Section 5.3: a setup where fitness of strategies are evaluated by averaging the

score of the strategy across all four homogeneous environments, and a setup with a hetero-

geneous environment where two copies of each of those four action-dominant models were

used as opponents.

Figure 8.2 shows that strategies evolved in heterogeneous environments also per-

formed better than other strategies in the heterogeneous environment itself, but did not

show any benefit over other strategies in homogeneous environments. On the other hand,

while strategies evolved in multiple homogeneous environments performed worse in each

homogeneous environment than the ones evolved in that particular environment, they sig-

nificantly outperformed the rest of the strategies (p-value < 10−11). In line with results in

Section 5.3, these results suggest that evolving strategies in a set of diverse homogeneous

environments may be a useful approach to create strategies that generalize well.

So far, evolutionary environments consisted of an artificial combination of models,

in order to understand how the different strategies interact. The next section looks at evo-

lutionary results with sets of opponents that are determined in a more realistic way, taking

into consideration the groups in the human subject experiment data.

8.5 Experiment 3: Evolving in Complex Environments

To see how strategies evolve in environments that are more realistic than the ones employed

so far, evolutionary environments were created to simulate three groups of eight or nine

players from the human experiment data. For each player in each group, the player was

replaced with the evolving strategy and the opponents with the corresponding human sub-

ject’s models that were created in Chapter 7, resulting in nine evolutionary environments

for Group 1, and eight for Groups 2 and 3, with a total of 25 environments. Each pair of en-

96



vironments within each group shared all but one opponent, which makes them more similar

compared to environments from the two other groups.

As in the previous experiments, 64 evolutionary runs were performed for each en-

vironment, and the best strategy at the end of each run was selected as the resulting evolved

strategy from that run. Table 8.2 shows the distribution of those strategies, organized by

originating human group. Since there are many more strategies displayed in the PCA plots,

the two diagonal boundary lines mentioned above at the left and right are much more promi-

nent in Table 8.2 than in Table 8.1.

Furthermore, a few more lines parallel to those two are visible about half-way and

one-third of the way from the bottom convergence point to the left and right edges. Just

like the left and right boundary diagonals correspond to maximum icon and team imitation,

respectively, these lines correspond to 50% or 67% icon or team imitation. This result is

likely an artifact of the employed configuration of NEAT, where each member of the initial

evolution population is a minimal network, often having a zero value for all except one

output of the network, which gets interpreted as a fractional action probability such as 0.5,

0.33, or 0.67. With more strategies in the PCA plots, it is also clearer that the corresponding

points lie in a triangle (i.e. the bottom half of a rotated square), which means most of them

have at least 50% of team or icon imitation.

The performance of the evolved strategies, grouped by originating human groups

can be seen in Figure 8.3. As in Experiments 1 and 2, strategies evolved with similar op-

ponents (i.e. within each group) performed significantly better in environments from the

same group compared to strategies evolved in the other two groups’ environments (p-value

< 10−32). The performance difference was smaller than in the first two experiments, which

is to be expected because the environments are more similar in Experiment 3 than in Ex-

periments 1 and 2. It is also more difficult to characterize the strategy difference upon

which these performance improvements are based. They are subtle and numerous, and in

combination, allow the strategy to beat its opponents.
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Environment PCA for All Evolved StrategiesId Opponents

1 Group 1 (8) ×9

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

2 Group 2 (7) ×8

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

3 Group 3 (7) ×8

−6 −4 −2 0 2 4

−3

−2

−1

0

1

2

3

4

Table 8.2: Strategies evolved in environments with model groups that correspond to three
human subject groups. For each group, the same number of environments were created as
the number of players in the group, where in each environment, one model was replaced
with the evolved strategy during fitness evaluation. The first PCA plot shows 64× 9 = 576
evolved strategies since there are nine players in the first group, whereas the second and
third plots show 64 × 8 = 512 strategies since those groups had eight players. The PCA
dimensions are shared with the evolved strategies in Table 8.1. The diagonal boundary
lines at the bottom left and bottom right represent maximum icon imitation and maximum
team imitation, respectively, and they are more prominent than in Table 8.1 here due to the
increased number of displayed strategies.
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Group 2

Group 3

0.640
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0.650
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0.660

0.665

Score against Group 3 Opponents

Figure 8.3: Performance comparison among strategies evolved in environments that cor-
respond to three human subject groups, which are also compared with the average perfor-
mance of models for human subjects in the group. The layout is similar to Figure 8.2.
Again, the groups of strategies on the diagonal perform significantly better than the others
shown in the same row (i.e. those evolved in other environments), though the difference is
smaller than in Figure 8.2. The results demonstrate that evolution can produce customized
strategies for given environments in this domain.
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Most interestingly, the evolved strategies significantly outperformed the human sub-

ject models that they replaced during evolution by a difference of 0.1 normalized score

(p-value < 10−5). The score advantage of the evolved strategies can be explained by the

difference in action ratios. Overall, the evolved strategies imitated 54% more than the hu-

man subject models, with 52% more team imitation (p-value < 10−10). On the other hand,

the evolved strategies retained their icons 41% less (p-value < 10−8), retrieved icons 4.4%

less (p-value = 0.044), and innovated 4% less than the models (p-value = 0.014). This result

shows that it is indeed possible for evolution to discover and utilize opportunities in realistic

human competitive multi-agent environments, and improve behavior over humans. More-

over, this result also provides insights into how human performance could be improved.

8.6 Conclusion

This chapter focused on optimization of strategies in the social innovation game domain.

Three experiments explored strategies evolved in various environments with opponents that

are models of subjects from the human study: (1) single homogeneous environments with

opponents that dominantly perform one type of action, (2) multiple homogeneous environ-

ments and a single heterogeneous environment, and (3) environments with sets of oppo-

nents representing three diverse subject groups from the human study. Both the first and

third experiments showed that evolution was able to produce strategies that are tailored to

the particular environment and that they significantly outperform strategies evolved on other

environments. Though, the differences were subtle and harder to characterize in the third

experiment. Moreover, the second experiment demonstrated that strategies that generalize

across diverse sets of opponents can be evolved using multiple homogeneous environments

for fitness evaluation. The third experiment in turn showed that it is possible to discover

and utilize subtle opportunities in realistic environments, and perform better than the human

models by imitating more, and retaining, retrieving, and innovating less. The next chapter

will provide general discussion and potential future work.
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Chapter 9

Discussion and Future Work

This chapter compares the results of the abstract domain that was the focus of Chapters 3, 4,

and 5 with those of the concrete domain of Chapters 6, 7, and 8. It then discusses the limita-

tions and main areas of future work to overcome them, including developing more versatile

strategy representations, using alternative optimization methods, exploring further appli-

cations for human models, applying the framework to analyzing real-world archival data,

characterizing CMAS theoretically, and extending the framework with opponent modeling

and communication.

9.1 Domain Comparison

The abstract NK domain and the concrete game domain have several similarities. Most

importantly, both domains have a search space with dimensions that correspond to potential

elements of a solution. In the abstract NK domain, these elements are the bits of an N -bit

binary number, which is a point in the search space. Similarly, a solution in the concrete

game domain with six-icon teams and a 48-icon league can be considered to be a 48-bit

binary number, but with the limitation that exactly six bits are set as 1 (i.e. included in the

team) and 42 bits are set as 0 (i.e. excluded from the team).
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In both domains, the elements of a solution contribute to the fitness of the solution

in combination with other elements. In particular, in the abstract NK domain each bit

makes a contribution to the fitness in combination with K other bits. On the other hand, in

the concrete domain only a subset of all icons are involved in such interactions and only in

pairs: If such a pair exists in a player’s team (i.e. the corresponding bits are set to 1 in the

solution) in a round, then bonus or penalty points are added to the player’s score for that

round.

As is typical in CMAS, both domains have multiple agents who simultaneously

perform a search in the solution space for high-fitness solutions. The agents can copy other

agents’ solutions in whole to a varying extent. In the abstract domain, they can do that

via the use of public memory if other agents use public memory, whereas in the concrete

domain they can do that in any round using the team imitation action.

On the other hand, the two domains have certain differences as well, besides the

ones already mentioned. First, icons in a player’s team (i.e. the 1 bits in the solution)

contribute to the fitness of the solution individually in the concrete domain, whereas there is

no explicit fitness contribution for the 1 bits of the solution in the abstract domain. Second,

team scores are not calculated using the NK model in the concrete domain, but by using

points for individual icons and bonuses or penalties for a subset of icon pairs, which are

fixed. Third, the fitness landscape in the abstract domain is dynamic (i.e. fitness of points

first get boosted and then reduced due to crowding), whereas in the abstract NK domain,

the landscape does not change as players discover solutions. Fourth, since in the abstract

domain there are few agent states of interest (represented by combinations of network input

values), the evolved neural networks are used as CPPNs to generate patterns that fill action

probability tables; in contrast in the concrete domain, evolved neural networks are used

directly as the agent’s strategy to allow more fine-grained agent states than in the abstract

domain.

The experiments in Section 5.2 showed that distinctly different search strategies
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evolve in different environments, and they are generally better than strategies evolved in

other environments, evolved general strategies, and manual strategies. They are also signif-

icantly more complex than the manual strategies, and would be difficult to design without

an automatic machine discovery method such as evolutionary computation. The same result

applies to the concrete game domain as demonstrated in Sections 8.3 and 8.5. Moreover,

Section 5.3 showed how a single general strategy can be evolved to perform well across

multiple different environments, with only a small cost in performance. Section 8.4 showed

this result too applies to the concrete domain. Therefore, even though the domains are

different, i.e. one is abstract and mathematical, and the other concrete and based on hu-

man performance, the same CMAS formalization applies to both and leads to consistent

conclusions. The main hypotheses of the dissertation were therefore verified: CMAS cap-

tures a category of real-world problem solving, and evolutionary computation is useful in

discovering good strategies for CMAS problems.

9.2 Strategy Representation

There are several limitations to the strategy representations employed in this dissertation.

In Section 3.7, agent strategies were only coarsely encoded for the abstract NK domain.

For instance, agents were able to choose the best point of either the public memory or the

private memory. A new action could be added to agents’ strategies to let them pick the best

of both memories based on their fitness. Such an extension would improve performance by

allowing the agents to take advantage of the points with the highest fitness that are available

to them, e.g. when both public and private memory points both have high or low points. It

might also lead to more realistic agent behaviors.

Furthermore, the power of CPPN to represent strategies was not yet fully utilized

for the abstract domain. Because their inputs and outputs are continuous, CPPNs can in

principle represent strategies over a very large number of (even continuous) states and ac-

tions. Such an approach would make it possible to represent much more refined strategies,
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which could in turn lead to more complex emergent behaviors, and to more accurate mod-

eling of real-world search. In fact, a similar path was chosen for the concrete domain in

Chapter 8: evolved CPPNs are used as neural networks that represent agent strategies di-

rectly: actions (i.e. network outputs) are then performed probabilistically based on agent’s

state (i.e. network inputs).

However, even that approach has limitations in the concrete game domain. For

instance, in the experiments in Chapters 7 and 8, the imitation action was limited to copying

the highest-scoring player. This limitation can be relaxed by allowing the imitation source

to be one of the top two or three players, chosen randomly with probabilities based on

proportions observed in experiments with human subjects (i.e. 82% from the player with

first rank and 10.7% from the player with second rank; Wisdom et al., 2013). Alternatively,

agents can be allowed to choose the imitation source freely, just like the human subjects,

(e.g. via using model outputs to specify the exact imitation source). This approach might

help mimic behaviors such as copying from a specific player, instead of always from the

best-scoring one.

Another limitation concerns choosing icons to imitate, innovate, and retrieve. While

the second tier neural network considers icon-specific state (i.e. icon’s popularity and age),

while deciding whether to e.g. imitate, the icon to copied from the source was chosen ran-

domly. A natural extension would be to add another output to the evolved neural network

architecture, and run the network with icon-specific inputs on each icon to decide which of

those icons to copy. The icons that already exist in the player’s own team would be skipped

for that round. Such an extension could allow learning to copy more popular icons, and

therefore make innovation, icon imitation, and icon retrieval actions more realistic and less

random.

To obtain even more sophisticated and potentially more realistic strategies, agent

strategies could remember how the replacement of only a single icon in any player’s team

changes its score. Such a memory is possible because the scores for all players’ teams
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are made known to all players at the end of each round. Players could even replace single

icons in their teams to actively collect such observations. Such a memory could help them

make more informed decisions about which icons to copy from other teams or the league

and which icons to replace in their teams. For instance, if the score increases significantly

when another player replaces icon X in their team with icon Y , and the first player happens

to have X in their team in a following round, they could choose to replace that icon with

Y . Note that observations made in one game would only be useful during that game, since

point assignments for individual icons and icon pairs are shuffled at the beginning of each

game. While the bonuses or penalties for icon pairs might complicate such an extension, it

might still be worthwhile, especially for the game configuration with 48 icons in the league,

where only a third of the icons are in such a pair: The probability of either the copied or

replaced icon being in such a pair and of both that icon and its pair being in a team of six

icons is relatively low. Also, if two conflicting observations are made for the same pair of

icons, which would mean that one icon in that pair is part of a bonus or penalty pair, then

that icon pair could be excluded from this extension.

In short, there are several ways to improve and extend strategy representations.

Future work opportunities exist in optimizing them as well, as described in the next section.

9.3 Optimization

For general strategies like those evolved in Sections 5.3 and 8.4 to scale up to even more

diverse environments, it might be beneficial to allow multimodal behaviors, so that the same

agent strategy can have distinct behaviors in different contexts (Schrum and Miikkulainen,

2012). A further step in this direction would be to coevolve all or a subset of the opponents

as well. In this manner, the environment could present more diverse challenges, and more

interesting and perhaps realistic general strategies could evolve.

Another future direction is to extend the search with multiple objectives, i.e. fitness

measures. Instead of having a single fitness objective, there could be more than one rel-
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evant way of measuring the quality of a solution. For instance, for a product in industry,

these multiple fitness objectives could include novelty, usefulness, and product desirability

according to consumers, as well as market share and value from the perspective of each

company. The fitness used in this dissertation corresponds to this value. When applied to

innovation search, that value would represent the potential to make money. To implement

multiple objectives agents can be made to utilize aspects of multi-objective optimization

methods, such as NSGA-II (Deb et al., 2000), and consider multiple candidate solutions

as a Pareto set. Such an extension would make it possible to model product evaluation

more flexibly and more accurately, and to decouple novelty and other types of fitness to

investigate their effects in isolation and therefore more effectively.

A limitation of the experiment in Section 8.5 was that strategies were optimized

against opponent models for only three groups of human subjects. More subject groups

can be used as opponents; such an extension would make it possible to investigate the dif-

ferences between strategies optimized against different sized groups. Because it is already

known that group size affects ratios of utilized actions and the score, such a comparison

might yield insights into what strategies work best against such diverse groups.

One downside of the evolutionary approach utilized in this dissertation is that it

requires a large population and therefore a significant number of fitness evaluations. Thus,

alternative evolutionary methods such as CMA-ES (Hansen et al., 2003) and Estimation

of Distribution Algorithms (Larrañaga and Lozano, 2002) may be considered. In those

approaches, statistical models of the solutions and their fitness are maintained, making it

possible to get by with fewer fitness evaluations in structured domains like CMAS.

The optimization for the concrete game domain used human models as the oppo-

nents in the environment. The next section will present future work in improving those

models.
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9.4 Human Models

Gameplay data used for training human models in Chapter 7 was limited to games with

eight or nine players. With fewer players, scores are different, which complicates distance

objectives. This restriction could be relaxed by normalizing the scores achieved by human

subjects, thus giving access to more training data.

Moreover, only the last game for each human group was used for modeling. The

average score of subjects increased across games; they probably learned to play better over

the eight games. By training only on the last game, their best performance was thus cap-

tured. However, the average scores usually plateaued in the last three games. Including all

three would help increase the coverage of training data to more game states for the subjects

who are modeled.

Models of human subjects, such as those obtained in Sections 7.5 and 7.6, can be

useful as replacements for human players, thereby making it possible to obtain much more

data, e.g. through Mechanical Turk (MT). When an MT worker wants to play the game, and

there is nobody else connected to the game server at the same time, the previously trained

models can fill in so that the human player has a group of peers with which to play the game.

Human models that show high levels of a specific action (e.g. imitation), can be used as

peers for human subjects to create specific environments. Homogeneous sets of such model

peers could help provide insight into how human subjects react to environments with, for

example, high innovation, imitation, or retention. On the other hand, combinations of model

peers with different dominant actions could be utilized to find which types of environments

human subjects perform best.

Furthermore, by evolving general strategies that score as high as possible (as in

Section 8.4), as low as possible, or at any desired level, one can create game environments

for human subjects where all their peers are likely to score at a desired level. Such envi-

ronments can be used to study how people’s performance or their proportion of actions are

affected by the competition. It would be interesting to determine, for example, whether
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high-performing peers lead people to imitate more, or whether low-performing peers cause

people to innovate more.

9.5 Other Future Work

More generally, the simulations in this dissertation suggest that the CMAS approach can

be used to provide insight into what kinds of strategies work well in real-world competitive

multi-agent search. One possibility is to set up the search space and the agent parameters

based on real-world archival data, such as the historical record on patents and products in

a particular industry (e.g. mobile electronics, robotics, and pharmaceuticals). Search can

then be simulated on that landscape, explaining why certain strategies were effective, and

potentially discovering new strategies that would have worked even better.

On the other hand, CMAS is a general and formally defined problem domain, which

should make it possible to analyze it theoretically. Developing a theory for the interactions

of agents in competitive multi-agent search may help derive optimality principles based on

stochastic strategies. It might then be possible to formulate theoretical bounds on perfor-

mance of agents in various environments such as ones where agents act extremely compet-

itively or extremely cooperatively. For example, stochastic processes (Papoulis and Pillai,

2001) could be used to characterize the scope and power of the search methods, deriving

convergence and dominance conditions, as has been done in prior work on coevolution and

estimation of distribution algorithms (Stanley and Miikkulainen, 2004; Alden, 2007; Ficici

and Pollack, 2001; Mühlenbein and Höns, 2005). Such an extension may provide theoret-

ical insight into innovation search as a real-world application domain. Furthermore, since

the speed and magnitude of boosting and crowding differs in various real-world CMAS do-

mains, those parameters could be utilized in the theoretical analysis to make it more useful

for particular domains.

Another potential application for CMAS is games where users (e.g. team owners)

put together a solution (e.g. a team) that consists of distinct components (e.g. football play-
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ers) to compete with other users’ solutions. For instance, in (American) fantasy football1,

users perform actions such as drafting, trading, adding, and dropping real players in order to

create their fantasy teams. Each week, a specified number of starting players are designated

for each game position by the user to start that week’s game, where the remaining players

in the user’s team are benched. Each team gets a score based on the performances of its

starters in that week’s NFL games. Similar issues come up in several economic strategy

games, where the players try to maximize their portfolio of resources. It may be possible

to create good artificial players for such games, making them more interesting and realistic.

It may also be possible to extend them to training people in strategic thinking in economic

domains.

Aspects of real-world competitive multi-agent search that were not addressed in this

dissertation include opponent modeling and explicit interactions between agents via direct

communication. Opponent models let agents adapt to the environment by altering their

strategies depending on the opponents (Carmel and Markovitch, 1996). Communication

allows agents to cooperate more effectively, form coalitions, and negotiate.

Another missing aspect is the concept of cost for discovering solutions (i.e. moving

to a new point in the search space). For instance, in innovation search, the cost of coming

up with a new product or prototype is different for each company. Moreover, this cost also

depends on the particular features included in the product. To capture this level of detail,

each included feature (i.e. 1 bit in the binary representation of the solution) would need to

contribute a certain amount to the cost individually and possibly in combination with other

features, similar to how icons contribute to the team’s score in the concrete human game

domain of Chapters 6-8.

Furthermore, in real-world innovation search domains, such as technological in-

novation or scientific discovery, the dimensionality of the search space is not fixed. New

dimensions are constantly added to the search space, as in the case of invention of new
1http://en.wikipedia.org/wiki/Fantasy football (American)
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classes of features or patents that can be used to build new products. However, the disser-

tation assumes that the search space has a fixed dimensionality. While such a restriction

may not be a problem for modeling and studying past agent search behavior, it may make

predicting and planning for the future harder. Therefore, an extension that would allow new

dimensions to be added to the search space would make the methodology more powerful.

Such extensions would make it possible to extend CMAS to more competitive problem-

solving situations and make it more useful in the real world.

9.6 Conclusion

This chapter discussed the similarities and differences between the abstract NK and con-

crete social innovation game domains, as well as how the results in the two domains com-

pare. Several ideas for future work were proposed to remove assumptions, simplifications,

and limitations, and to try alternative evolutionary optimization methods. Extensions to

obtain more representative human models in the concrete domain, and possible future ap-

plications for those models were also discussed. The extensions presented in this chapter

would all be useful in modeling real-world innovation search in various future domains.
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Chapter 10

Conclusion

Competitive multi-agent search takes place in a non-stationary environment, which requires

the solution method to be reactive to changes in the fitness landscape and the knowledge of

opponents’ searches. Thus, the problem definition and the solution method for such search

is different from standard search. Therefore, competitive multi-agent search has not been

extensively studied in previous work neither computationally nor as a model for human

problem solving. This dissertation aims to improve our understanding of such search in

general and in innovation search in particular, using a series of experiments in an abstract

and a concrete domain. This final chapter summarizes the contributions of the dissertation,

and evaluates their potential impact.

10.1 Contributions

This dissertation makes three contributions. First, in Chapter 3 it develops competitive

multi-agent search (CMAS) as a formalization of human creative problem-solving activi-

ties. CMAS was originally developed to understand how high-technology companies search

for technological innovations, but the same formalization can potentially be applied to com-

putational modeling of scientific discovery, engineering problem solving, and art and de-
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sign. In CMAS, multiple agents search for the same peaks (i.e. innovations) on the common

fitness landscape. They each try to find as many and as high peaks as possible over a given

amount of time, representing the cumulative value of their innovations. While searching,

they can choose to share information about what they find, or keep such information pri-

vate. Furthermore, the landscape is dynamic in that the fitness of the points can increase or

decrease when multiple agents discover them, representing the dynamic valuation of inno-

vations in the real world. The CMAS formalization is useful because it makes it possible to

characterize how humans perform creative problem solving activities, resulting in precise

theories in management science, psychology, and social science. However, the formaliza-

tion also makes it possible to use such models to determine how humans could perform

better than they currently do, thus informing both the individuals who are trying to solve

these problems, and the administrators that design policies to encourage innovation and

creativity.

The second contribution focuses on this opportunity to do better. The dissertation

demonstrates that evolutionary computation is a particularly good way to solve CMAS prob-

lems. Two domains were utilized as experimental platforms. The first one was an abstract,

general CMAS domain, defined in terms of an NK fitness landscape (Kauffman, 1993), as

described in Chapter 3. A comprehensive array of basic search strategies was created for

this domain in Chapter 4, based on local (exploitative) search and long-range (exploratory)

search using public and/or private information about the landscape, and compared in vari-

ous environments with those strategies used as opponents. An advanced search strategy was

also implemented based on tree search, representing a typical AI problem solving method

(Korf, 1990). These strategies were then used to instantiate several different competitive

environments, by including competitors with different strategies. In Chapter 5, new strate-

gies were evolved for each environment in order to perform better than the existing ones.

The results show that (1) evolution can discover customized strategies that perform well in

homogeneous and heterogeneous environments, (2) it can discover general strategies that
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perform well across many different environments, and (3) the good evolved strategies are

more complex than the basic intuitive strategies. Such strategies exhibit optimal preference

for acting publicly or privately depending on the particular environment, and result in over-

all principles such as riding a wave of dynamically increasing landscape. The simulations

also demonstrate that some intuitive strategies such as explore when low and exploit when

high are not always the best. Furthermore, an interesting “Twitter effect” was discovered:

If the domain allows too much visibility, the agents tend to follow the same points, and the

performance of the population as a whole suffers.

The second domain was a social innovation game domain, described in Chapter 6.

Using human gameplay data from a study by Wisdom et al. (2013), in Chapter 7 mod-

els were trained for each human subject, comparing different modeling approaches. In

Chapter 8 those models were then used as opponents to evolve optimal strategies. The

results show that evolution can produce strategies customized for specific environments:

Strategies evolved in single homogenous environments and in a heterogeneous environ-

ment performed better than strategies evolved in other environments. The same result also

applies to strategies evolved against models of diverse human subject groups, but the per-

formance difference was smaller, and the difference in strategies was subtle and harder to

characterize. Furthermore, those evolved strategies performed significantly better than the

human models, where the evolved strategies differed from the models in that on average

they performed significantly higher imitation and lower retention, innovation, and retrieval.

Evolution was also able to produce general strategies that perform better than strategies

evolved in a single environment, but lower than those evolved for the particular evaluation

environment. Thus, insights about CMAS were first developed in the abstract domain that

made them easy to see, and then verified in the concrete, real-world human subject domain.

These results suggest that evolutionary computation is a good way to design strategies for

CMAS in general.

The third contribution is a technical one: a novel spherical visualization for NK
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fitness landscapes, described in Section 3.2. This visualization maintains the continuity of

the original high-dimensional landscape while reducing it to an intuitive 3D surface. A

focal point is selected, and continuity is maintained by representing points further away

with lesser resolution. This visualization is useful in illustrating the search strategies in the

abstract domain: For instance, it makes it strikingly clear why the wave-riding behavior is

so effective, and why the Twitter effect can be so devastating. The visualization is general,

and could be useful for any study involving high-dimensional binary spaces.

10.2 Conclusion

This dissertation showed that CMAS is a potentially useful way to study problem solving

in the real world, and that evolutionary computation is an effective way to gain insight into

such problems. It is possible to formulate many real-world creative activities as CMAS,

discover effective search strategies that might be hard to design by hand, and understand

why they are effective. CMAS thus demonstrates an interesting role for evolutionary com-

putation: it can be used not only as an automated method for engineering, but also as a way

to understand how human behavior can be more effective. In the future, it may be possible

to use CMAS simulations to make recommendations to human decision makers, as well as

inform policy makers that aim at encouraging innovation and creativity.
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Appendix A

Parameters

Simulation Parameter Value
N (for the NK model) 12 and 30
K (for the NK model) 4
Number of agents 10
Number of time steps per run 200 in Sec. 4.1-4.3 and 500 in Sec. 4.4
Number of runs per strategy evaluation 200
Flocking intensity {1.1, 1.2} → 0.9 (over 10 visits)
Flocking radius 2
S1 usage frequency once every five time steps

Table A.1: Simulation parameters for the abstract domain in Sections 4.1-4.4.
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Simulation Parameter Value
N (for the NK model) 10 and 20
K (for the NK model) 3
Number of agents 8
Number of time steps per run 100
Number of runs per strategy evaluation 200
Flocking intensity 1.05→ 0.9 (over 10 visits)
Flocking radius 2
S1 usage frequency every time step

Table A.2: Simulation parameters for the abstract domain in Section 4.5 and Chapter 5.

Evolution Parameter Value
Number of evolutionary repeats per setup 64
Number of generations 500
Population size 100

Table A.3: Evolution parameters for both the abstract and concrete domains.
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NEAT Parameter Value
Add bias to hidden nodes 1
Adult link age 2
Age significance 1.2
Allow add node to recurrent connection 0
Allow recurrent connections 0
Allow self recurrent connections 0
Compatibility modifier 0
Compatibility threshold 20
Disjoint coefficient 1.0
Dropoff age 10
Excess coefficient 1.0
Extra activation functions 1
Extra activation updates 19
Fitness coefficient 1.0
Force copy generation champion 1
Link gene minimum weight for phenotype 0
Mutate add link probability 0.2
Mutate add node probability 0.2
Mutate demolish link probability 0.04
Mutate link probability 0.2
Mutate link weights probability 0.8
Mutate node probability 0.05
Mutate only probability 0.5
Mutate species champion probability 0
Mutation power 2
Only Gaussian hidden nodes 0
Signed activation 0
Smallest species size with elitism 1
Species size target 0
Survival threshold 0.2
Weight difference coefficient 0.8

Table A.4: NEAT parameters for both the abstract and concrete domains.
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Backpropagation Parameter Value
Learning rate 0.1
Momentum 0.1
Weight decay 0.01

Table A.5: Backpropagation parameters used when training neural network models for the
concrete domain.
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