
MARLEDA: Effective Distribution

Estimation through Markov Random Fields

Matthew Alden mealden@uw.edu
Institute of Technology, University of Washington
Tacoma, WA 98402, United States

Risto Miikkulainen risto@cs.utexas.edu
Department of Computer Sciences, The University of Texas at Austin
Austin, TX 78741, United States

Technical Report TR-13-18
Department of Computer Science
The University of Texas at Austin
November 2013

Abstract

Estimation of Distribution Algorithms (EDAs) combine genetic algorithms with sta-
tistical modeling in order to learn and exploit the structure of search domains. Such
algorithms work well when the EDA’s statistical model matches the structure of the
domain. Many EDAs use statistical models that represent domain structure with
directed acyclic graphs (DAGs). While useful in many areas, DAGs have inherent
restrictions that make undirected graph models a viable alternative for many do-
mains. This paper introduces a new EDA, the Markovian Learning Estimation of
Distribution Algorithm (MARLEDA), that makes effective use of this idea by em-
ploying a Markov random field model. MARLEDA is evaluated on four combinatorial
optimization tasks, OneMax, deceptive trap functions, the 2D Rosenbrock function,
and 2D Ising spin glasses. MARLEDA is shown to perform better than standard
genetic algorithms and a DAG-based EDA. Improving the modeling capabilities of
EDAs in this manner brings them closer to effective applications in difficult real-world
domains, such as computational biology and autonomous agent design.

Keywords

Probabilistic modeling, Estimation of distribution algorithms, Markov random field,
Markov chain Monte Carlo

1 Introduction

In recent decades computers have become increasingly indispensable tools for researchers
in many fields including mathematics, engineering, biology, and physics. Computational
science (or scientific computing) transforms physical and mathematical problems into
computational problems by defining a computational model. These models can be stud-
ied, adjusted, and experimented with to generate predictions about their real-world
counterparts. In turn, real-world experiments help form the basis for new computa-
tional models. There is an interplay between real-world and computational research;
each informs and refines the other. While a computational formulation of real-world
problems is useful and convenient, there are drawbacks.

The key difficulty of many computational problems, such as DNA sequence align-
ment, selecting key attributes for data mining, or optimizing antenna design, is that no
analytic solution methods exist. There are also problems that do have analytic solu-
tions, but those methods are too computationally expensive to be practical. Without
the ability to construct an ideal solution efficiently, we are often reduced to searching for
desirable solutions. Search algorithms are, in many cases, a relatively easy and effective
means of producing near-optimal solutions to difficult problems. However, in complex
domains search is often inefficient, taking too long to be practical.

Evolutionary search seeks to harness the creativity and problem-solving ability of
biological evolution. The Genetic Algorithm (GA; Holland, 1975; Goldberg, 1989), mod-
eled after natural evolution, combines simple operations such as crossover and mutation
to form a generic search system. However, nature retains two important advantages
over such an algorithm: massive parallelism and deep time. Simple operations may be
sufficient to discover complex systems in such a luxurious environment, but generating
comparable results with human-reasonable resources requires greater sophistication.

Estimation of distribution algorithms (EDAs; Mühlenbein and Paaß, 1996; Baluja
and Davies, 1997; De Bonet et al., 1997; Mühlenbein, 1997) are a new and powerful
approach to search. The main idea is to combine statistical modeling with evolutionary
search. These algorithms exploit statistically identifiable structure within an application
domain to produce better solutions or to produce solutions more quickly. The statistical
models can be defined a priori, injecting prior information into the search process, or
learned as part of the algorithm’s operation. The power of these algorithms therefore
depends on two factors: (1) how appropriate the statistical model is to the domain, and
(2) how well the system can learn it.

The majority of EDAs incorporate models that organize dependencies as directed
acyclic graphs (DAGs), such as Bayesian networks (Pearl, 2000; Jensen, 2001). There
are many established learning mechanisms for DAGs and simple methods for sampling
the resulting model. However, directed graph models are not necessarily the most nat-
ural representation of domain structure for all problems. For example, a DAG cannot
represent, by definition, bi-directional or cyclic dependencies.

Several researchers have proposed utilizing undirected graph models in EDAs
(Harik, 1999; Santana, 2003; Shakya et al., 2005). In particular, Markov random fields
(MRFs) have been shown to be a promising basis for constructing such models. However,
learning and sampling MRFs is more difficult than DAGs, and has so far constrained
their implementation.

This paper introduces the Markovian Learning Estimation of Distribution Algo-
rithm (MARLEDA), a general-purpose EDA that can learn and use a Markov ran-
dom field model. The MRF model is constructed to reflect the interactions of the
search domain’s parameters, allowing MARLEDA to identify good solutions intelligently.
MARLEDA is compared experimentally to a standard GA and one of the most compe-
tent EDAs, the Bayesian Optimization Algorithm (BOA; Pelikan et al., 1999) (BOA),
on several finite-valued combinatorial optimization tasks. MARLEDA performs well in
these tasks, demonstrating not only the power of the system but also suggesting that
EDAs are ready for application to real-world problems.

2 Background

A finite-valued combinatorial optimization task consists of a candidate solution space,
X, and an objective function, f : X → R. The goal is to find a solution, x∗ ∈ X, that
either maximizes or minimizes the objective function, depending on the task. Candidate

2 TR-13-18

solutions are composed of many individual parameters, each with a finite number of
possible values, thus the size of the solution space is combinatorial in the number of task
parameters.

Difficult combinatorial optimization tasks often lack analytic solution methods, thus
solutions can only be discovered via search. However, because the solution spaces of
interesting combinatorial optimization tasks are very large, systematic search is compu-
tationally intractable. It is sometimes possible, however, to solve them approximately
using probabilistic search methods. In the following sections two such methods are
briefly reviewed, genetic algorithms and estimation of distribution algorithms. The ba-
sic theory behind MARLEDA’s statistical model, Markov random fields and Pearson’s
χ2 test, is also presented.

2.1 Genetic Algorithms

Genetic algorithms (GAs) (Goldberg, 1989; Holland, 1975) are a well-established search
method that has been successfully applied to a wide range of computational problems,
such as planning, engineering design, and control. The basic principle underlying GAs
make them well suited for combinatorial optimization tasks. GAs perform a parallel
search, maintaining a population of candidate solutions that evolve over time. Evolution
is guided by the objective function of the task, commonly called the fitness function
or fitness metric. In keeping with GA conventions, “high-fitness” refers to desirable
fitness function scores, i.e. high or low values depending on the direction of optimization.
Similarly, “low-fitness” refers to undesirable fitness scores. The GA search mechanism
is designed to visit candidate solutions of ever improving fitness at each iteration of the
algorithm.

Following the biological analogy, candidate solutions are encoded in artificial chro-
mosomes. A chromosome is composed of a set of genes, each representing a parameter
of the optimization task (in practice there may be an additional mapping between a
chromosomal encoding and a candidate solution, but for notational simplicity the space
of chromosomes and the space of candidate solutions are assumed to be the same).
The value of each gene, its allele, is one of the possible values for the associated task
parameter.

The classic selection, recombination, and mutation operations govern the search
behavior of GAs. These operators work well provided high-fitness chromosomes are
located “near” other high-fitness chromosomes or their recombinations. GAs perform
very well on tasks where such assumptions are true, i.e. tasks with building blocks (Gold-
berg, 1989). However, GAs are less effective on tasks in more structured domains where
combinations of genes must be correctly set to achieve high fitness.

2.2 EDAs

Estimation of distribution algorithms (EDAs) (Baluja and Davies, 1997; De Bonet et al.,
1997; Mühlenbein, 1997; Mühlenbein and Paaß, 1996) address the building block problem
by statistically inferring dependencies among genes. These dependencies are expressed
in a statistical model, which can then be sampled to produce a new population. Through
the sampling process, EDAs are likely to preserve high-fitness combinations of alleles,
making the search process more efficient.

TR-13-18 3

EDAs operate similarly to GAs, but sampling of the statistical model replaces the
recombination and mutation operations:

1. The initial population of chromosomes, P(0), is uniformly sampled from X and the
model,M(0), is initialized.

2. At iteration t, a subcollection, P ′(t) ⊆ P(t), of high-fitness chromosomes is selected.

3. M(t) is created to model the members of P ′(t).

4. A collection of new chromosomes, C(t), is produced by samplingM(t).

5. A subcollection, R(t) ⊆ P(t), of low-fitness chromosomes is selected.

6. P(t+ 1)← P(t)−R(t) + C(t).

7. Unless termination criteria are met, return to step 2.

The simplest EDAs employ univariate models (Baluja, 1994; Baluja and Davies,
1997; De Bonet et al., 1997; Harik et al., 1998; Mühlenbein, 1997; Syswerda, 1992),
which do not identify gene dependencies. These models essentially record the marginal
frequency of alleles for every gene. Let xi be the ith gene of chromosome x. New
chromosome are constructed by sampling the modeled distribution

P (x) =

n
∏

i=1

P (xi). (1)

Bivariate EDAs (Baluja and Davies, 1997, 1998) model dependencies between pairs
of genes. Formally, the model is

P (x) =

n
∏

i=1

P (xi|parent-of(xi)) . (2)

Bivariate EDAs are distinguished by the restrictions placed on the parent-child relation-
ship. For example, the Mutual Information Maximization for Input Clustering algorithm
(MIMIC) (De Bonet et al., 1997) learns a chain of gene dependencies, while the Bivari-
ate Marginal Distribution Algorithm (BMDA) (Pelikan and Mühlenbein, 1999) learns a
forest of tree dependencies, as illustrated in figure 1.

Multivariate EDAs (Prior, 1998; Mühlenbein and Mahnig, 1999a,b; Etxeberria and
Larrañaga, 1999; Mühlenbein and Mahnig, 2001; Alden et al., 2002) model dependencies
among larger sets of genes. One of the most successful multivariate EDAs is the Bayesian
Optimization Algorithm (BOA) (Pelikan et al., 1999) and its hierarchical extension
(hBOA) Pelikan and Goldberg (2001). BOA and hBOA use a Bayesian network as the
basis for the statistical model, capturing dependencies organized into a directed acyclic
graph (DAG). The Bayesian network model is constructed to approximately minimize
the Bayesian-Dirichlet difference (Cooper and Herskovits, 1992; Heckerman et al., 1995)
between the model and the chromosome population, thus promoting an accurate model.
The combination of a flexible model and a strong learning mechanism has made BOA
an outstanding algorithm in its class. Consequently, BOA is used for comparison with
MARLEDA on the benchmark experiments presented in chapter 4.

The above bivariate and multivariate EDAs are based on directed graph models (or
equivalent). Undirected graph models have been explored in a number of algorithms

4 TR-13-18

x1

x2x3

x4

x5

x6

x7

x8 x1

x2x3

x4

x5

x6

x7

x8

MIMIC BOA

Figure 1: Example learned gene-dependency structures for a fictional combinatorial
optimization task with eight parameters. While both DAG-based methods, MIMIC and
BMDA enforce very different global organization of dependencies. Domains that do
match the assumed organization will be difficult to optimize, therefore the choice of
statistical model is critically important when addressing a specific optimization task.

including the Extended Compact Genetic Algorithm (EcGA) (Harik, 1999), the Markov
Network Factorized Distribution Algorithm (MN-FDA) (Santana, 2003), the Markov
Network Estimation of Distribution Algorithm (MN-EDA) (Santana, 2005), and Distri-
bution Estimation Using Markov Random Fields (DEUM) Shakya et al. (2005); Shakya
(2006). Undirected graph models have been shown to be superior to their directed
graph model counterparts for many optimization tasks, making them strong candidates
for further research.

The greatest challenge in using undirected graph models is the difficultly in learn-
ing and sampling them. While Markov random fields have seen practical applications
in fields such as physics and image processing (Li, 2001; Winkler, 2003), such applica-
tions do not traditionally involve learning. However, EDAs must be able to learn the
MRF neighborhood system (as defined in the next section) in order to maximize their
effectiveness. Consequently, heuristic schemes have been developed for learning MRF
neighborhood systems (Santana, 2003, 2005; Shakya, 2006). While these schemes draw
on statistical methods, they generally lack the rigorous theoretical foundation available
to directed graph methods.

Sampling undirected graph models is difficult because the modeled variables are
treated as inherently homologous. Directed graph models, and the conditional proba-
bility distributions encoded therein, define a natural ordering of the nodes of a DAG,
such as the ordering achieved by “tracing” the dependency chain in figure 1(a). This
ordering makes it possible to evaluate the model efficiently via standard graph traver-
sal algorithms. In contrast, undirected graph models express relations that hold across
many sets of variables simultaneously and provide no natural node ordering. Conse-
quently, learning and sampling undirected graph models is considerably more costly
than directed graph models.

To make these processes tractable, existing algorithms artificially constrain their
undirected graph models. These constraints typically take the form of limits on the
complexity of the model or conversions of the model to simpler forms. For example, the
DEUM algorithm uses a univariate MRF model and its extension, Is-DEUM, employs
a bivariate MRF model (Shakya, 2006). The MN-FDA and MN-EDA methods use
junction graph and Kikuchi approximations to factorize the structure of their MRF

TR-13-18 5

x1

x2x3

x4

x5

x6

x7

x8

Figure 2: An example undirected graph model for a fictional combinatorial optimization
task with either parameters. Each variable (node) statistically depends on the variables
adjacent to it. In contrast the the DAG models of figure 1, this undirected graph model
has no natural ordering of its nodes, making learning and sampling the model more
difficult.

models (Santana, 2003, 2005). In effect, the MRF models are simplified or mixed with
directed relations to support less intensive MRF processing.

Such constraints make it practical to learn and sample the MRF models. However,
they make the models less flexible and the overall search process potentially less effective.
Therefore, the main contribution of this paper is to develop mechanisms for learning and
sampling a Markov random field, potentially resulting in more efficient search.

2.3 Markov Random Fields

A Markov random field defines the joint probability distribution of a set of random vari-
ables in terms of local characteristics, i.e. joint or conditional probability distributions
of subsets of them. Let {X1, . . . , Xn} be a set of finite random variables and let X be
the space of configurations of {X1, . . . , Xn}, i.e.

X =

n
∏

i=1

Xi. (3)

A probability measure, P , is a random field with regard to X if it is strictly positive
and normalized, i.e.











P (x) > 0, ∀x ∈ X
∑

x∈X

P (x) = 1.
(4)

A neighborhood system, ∂, defines a set of neighbors for each random variable such that






i 6∈ ∂(i)

i ∈ ∂(j) ⇐⇒ j ∈ ∂(i).
(5)

The Markov property then induces an MRF on P given ∂ such that

P (xi|xj , i 6= j) = P (xi|xk, k ∈ ∂(i)) . (6)

The neighborhood system and Markov property together imply that each random
variable is statistically dependent on all random variables inside its neighborhood, and

6 TR-13-18

statistically independent of all random variables outside its neighborhood (given the
neighborhood set). The neighborhood system can be interpreted as an undirected graph,
such as the one in figure 2.

MRFs can be equivalently defined in terms of a set of potential functions over
maximal cliques in the neighborhood system. However, the MRF learning and sampling
mechanisms described in sections 3.2 & 3.3 are more readily understood in terms of
the above definitions. In particular, this definition allows the MRF to be readily used
as an EDA model. First, it is defined in terms of conveniently computable conditional
probabilities, like those commonly used in EDAs. Second, each gene xi is conveniently
modeled by a random variable Xi, which makes the candidate solution and configuration
spaces are equivalent (X). Third, the neighbor relation can apply to any pair of random
variables; there are no ad hoc constraints on the structure of the neighborhood system.
This paper further shows that the MRF neighborhood system can be learned using a
metric for statistical dependence, χ2, which will be described next.

2.4 Pearson’s χ2 Test

Statistical hypothesis tests are commonly used to measure significance of statistical
comparisons. For example, Student’s t-test (Press et al., 1992) determines if the means
of two Gaussian distributions are statistically distinct. The test results in a confidence
level (or p-value) that is usually compared with a desired value, e.g. 0.95 or 0.99, to
decide whether the difference in means is statistically significant.

The confidence level can also be used as a direct measure of statistical dependence.
This approach leads to Pearson’s χ2 test, which is a non-parametric statistical hypoth-
esis test that measures the degree of similarity between two distributions of nominal
(orderless) data. When used with data sampled from nominal random variables, the
test measures the degree of dependence among the random variables. Pearson’s χ2 test
compares two frequency distributions (FDs), typically an observed FD and an expected
FD:

χ2 =
∑

x∈X

(Fobs(x)− Fexp(x))
2

Fexp(x)
. (7)

If Fexp is constructed to represent the null hypothesis (of independence) among a
set of random variables {Xm, . . . , Xt} and differs notably (confidence level near 1) from
Fobs, then Fobs is assumed to be the product of dependencies among {Xm, . . . , Xt}.

Like many statistical hypothesis tests, the confidence level of Pearson’s χ2 test
depends on the degrees of freedom of the hypothesis in addition to the χ2 value. Degrees
of freedom are generally defined as the number of estimate variables minus the number
of independent constraints on those variables. Consider an example contingency table
showing the joint frequency distribution of two nominal random variables, Xi and Xj ,
each with four possible values:

P
P
P
P
P

P
PP

Xi

Xj α β γ δ

α 4 5 10 3
β 18 5 3 9
γ 9 7 7 2
δ 34 8 12 15

Modeling this frequency distribution requires 16 estimate variables, one for each cell
of the table. The sum of samples in each row and column provides eight constraints on
those estimate variables. However, only seven of the constraints are independent, since

TR-13-18 7

the total number of samples can be obtained by summing the number of samples across
all rows or, equivalently, across all columns. There are therefore 16− 7 = 9 degrees of
freedom in the model.

More generally, the degrees of freedom, δ, for any two-dimensional contingency table
with r rows and c columns can be calculated as

δ = rc− (r + c− 1) = rc− r − c+ 1 = (r − 1)(c− 1). (8)

This derivation is valid when the frequency distribution is well covered, and extends
naturally to joint frequency distributions of more than two random variables.

However, derivation (8) overestimates the true degrees of freedom of systematically
sparse frequency distributions, like those typically occurring during population-based
search. Consider the following modification of the previous contingency table:

P
P
P

P
P
P

PP
Xi

Xj α β γ δ

α 4 5 0 0
β 18 5 0 0
γ 9 7 0 0
δ 34 8 0 0

In this example, two possible values for Xj , γ and δ, are missing from the frequency
distribution. In effect, insufficient sampling has systematically reduced the domain of
Xj . Modeling the frequency distribution no longer requires 16 estimate variables, but
only eight. The other “missing” eight no longer need to be modeled because their value
is systematically zero. The degrees of freedom of the model is reduced accordingly, from
nine to three. Any comparisons between frequency distributions that are both missing
the two rightmost columns should be based on three degrees of freedom, otherwise the
χ2 test might fail to identify a correlation in the data. This solution is included in the
MARLEDA method (described in the next section), making it possible to use χ2 to
construct an accurate MRF despite sparse sampling.

3 The MARLEDA Method

The MARLEDA search algorithm is designed to overcome the limitations of previ-
ous EDAs. By using a more general and flexible model, learned in an efficient way,
MARLEDA has the potential to be a more effective search method. MARLEDA still
follows the procedural framework for EDAs outlined in section 2.2. The following sec-
tions detail the major components of MARLEDA, with parameters of the MARLEDA
algorithm shown in highlighted font, and analyze the computational complexity of the
system.

3.1 Selection

Each chromosome in MARLEDA’s population is composed of a set of genes, each corre-
sponding to a parameter of the combinatorial optimization task. The number of genes is
the same for all chromosomes and fixed at Genes. All concrete statistics regarding genes
are calculated using members of the current population, P(t), where |P(t)| = PopSize.
To bias the statistics toward favorable population members, a subcollection P ′(t) ⊆ P(t)
of the current population is chosen via tournament selection (Goldberg and Deb, 1990).
The top Parents · PopSize (where Parents ∈ (0, 1]) high-fitness chromosomes compete in
tournaments of size TournSize. A total of PopSize chromosomes are selected for mem-
bership in P ′(t).

8 TR-13-18

3.2 The MRF Model

MARLEDA uses a set of nominal random variables, {X1, . . . , Xn}, to model the nomi-
nal genes, {x1, . . . , xn}, of a combinatorial optimization task. Statistical dependencies
among the random variables, and therefore among the genes, are recorded in a neigh-
borhood system, thus forming an MRF model.

The neighbor relation between any two random variables is grounded in an observ-
able statistical dependence within the members of P ′(t). Like many EDAs, MARLEDA
tests for these dependencies to learn its model. Consider a “partial” MRF whose neigh-
borhood system does not yet fully capture all the observable dependencies. Let Xi and
Xj be non-neighbors in the current neighborhood system, each with their own “partial”
set of neighbors. If a dependence between Xi and Xj is observable, the neighborhood
system should be updated to make Xi and Xj neighbors. Conversely, if Xi and Xj began
as neighbors and a dependence is not observable, they should become non-neighbors.

Pearson’s χ2 test is used to compute the confidence level of dependence between
two genes. The two frequency distributions compared are

Fobs(i, j) = F (xi, xj |xk, k ∈ ∂(i)) and (9)

Fexp(i, j) =
F (xi|xk, k ∈ ∂(i)) · F (xj |xk, k ∈ ∂(i))

|F (xk, k ∈ ∂(i)) |
, (10)

/noindent where Fobs is the joint frequency distribution of xi and xj , given xi’s neigh-
bors, as observed within P ′(t). Fexp is the joint frequency distribution of xi and xj ,
given xi’s neighbors, under the assumption that xi and xj are independent, i.e. the
product of the marginal FDs of xi and xj as observed within P ′(t). (Note: when using
binary chromosomes χ2 is adjusted using Yates’ correction; Yates, 1934.)

Intuitively, the above procedure measures how much information is gained by mak-
ing xi and xj neighbors. If Fobs and Fexp differ, xi depends on xj and the two should
be made neighbors. Similarly, if xi and xj began as neighbors, the gain in remaining
neighbors can be computed by temporarily removing their neighbor status and perform-
ing the same test. (Note: although the MRF neighbor relation is symmetrical, Fobs

and Fexp are not symmetrical about xi and xj . Ideally, the reciprocal test should also
be performed, with only two successes or two failures suggesting a change in neighbor
status. A single test is performed in MARLEDA for simplicity, and it works well in
practice.)

MARLEDA constructs the MRF neighborhood system via a greedy search approach.
Beginning with a trivial neighborhood system, ∂(i) = ∅. At each iteration ModelAdds

pairs of non-neighbors are tested. If the confidence level of the pair is at least ModelAd-

dThresh, the model is updated to make the pair neighbors. Similarly, ModelSubs pairs
of neighbors are tested, and if the confidence level is below ModelSubThresh the pair is
made non-neighbors. The order of all tests is randomized.

The two threshold values, ModelAddThresh and ModelSubThresh, represent how
strict of the neighbor relation is within the MRF neighborhood system. While statistical
hypothesis tests are typically used with very strict confidence levels, 0.95, 0.99, or higher,
in MARLEDA it is possible to use more relaxed confidence levels, since even partial
correlations in the data are beneficial to the sampling process. During preliminary ex-
perimentation it was determined that ModelAddThresh = 0.8 and ModelSubThresh = 0.6
work well across a spectrum of optimization tasks.

As mentioned in section 2.4, a degrees of freedom term, δ(i, j), must be computed
for each χ2 test between a pair of genes xi and xj . Let A be the set of alleles possible for

TR-13-18 9

each (and all) genes. Derivation 8 in section 2.4 defines the degrees of freedom parameter
as

δ(i, j) = (|A| − 1)
|∂(i)|+2

. (11)

However, the calculation is adjusted in two situations.
First, when one or more alleles for a gene are not represented in P ′(t), that gene no

longer contributes a full |A| − 1 degrees to the above calculation. The actual number of
alleles represented for each gene and adjusted degrees of freedom are

A(i) = {a ∈ A : ∃x ∈ P ′(t) : xi = a} (12)

δ(i, j) =
∏

k∈{i,j}∪∂(i)

max(|A(k)| − 1, 1). (13)

Second, the degrees of freedom term naturally grows exponentially in the size of
the neighborhood. The minimum χ2 value necessary to demonstrate dependence grows
exponentially as well. However, the candidate solution space is generally poorly repre-
sented by the chromosomes in P ′(t), i.e. |P ′(t)| ≪ |X|. There are a finite number of
samples in P ′(t) from which Fobs, Fexp, and consequently χ2, are computed. This con-
straint places an upper limit on the computable χ2 value, thus truncating its exponential
growth and making it increasingly difficult to expand the neighborhood system. This
restriction provides a natural limit to the growth of the neighborhood system, helping
prevent learning of unfounded dependencies.

However, when |A| = 2 the degrees of freedom calculation trivially collapses to one.
Instead of exponential growth in the size of a gene’s neighborhood, there is no growth.
The χ2 term, however, continues to grow, and this mismatch between degrees of freedom
and χ2 makes it too easy to “pass” Pearson’s χ2 test. Consequently, neighborhoods
can expand and become maximal without true statistical support. To combat this
problem, when |A| = 2 the computed degrees of freedom is artificially inflated to restore
exponential growth as follows

δ(i, j) =









∏

k∈{j}∪∂(i)

max(|A(k)| − 0.25, 1)







 . (14)

All genes but one, xi, contribute at most 1.75 “virtual” degrees to the calculation. Values
ranging from 1.5 to 1.75 worked well in preliminary experiments.

Pearson’s χ2 test provides a convenient method for learning the local neighbor re-
lations of a Markov random field. Though this greedy construction procedure is not
guaranteed to build an optimal MRF, it captures the high-fitness features of the popu-
lation. Constructing the model is only the first step; the model must then be sampled
to combine the high-fitness features into new chromosomes.

10 TR-13-18

3.3 Generating Chromosomes

New chromosomes are created in MARLEDA by sampling the MRF model. Sampling
is performed via a Markov chain Monte Carlo process:

1. xnew ← a random chromosome from P ′(t) .

2. Randomly select a gene xnew
i .

3. Compute P (xi|xk, k ∈ ∂(i)).

4. xnew
i ← sample from P (xi|xk, k ∈ ∂(i)).

5. Unless termination criteria are met, return to step 2.

Ideally, the sampling process continues until the allele distribution of the new chro-
mosome stabilizes. The number of iterations needed before convergence depends on the
specifics of the joint probability distribution encoded by the MRF and thus may not be
known a priori. However, a good rule of thumb is to allow the sampler to “burn-in”
for at least several thousand iterations. In MARLEDA, the sampling process is trun-
cated after MonteIters iterations. After termination, genes are mutated with probability
Mutation.

The complete random field on the configuration space X is not available, hence
P (xi|xk, k ∈ ∂(i)) is sometimes undefined. In such cases, a “relaxed” conditional prob-
ability is used. In effect, undefined regions of the configuration space are approximated
by nearby well-defined regions. Under normal conditions

P (xi|xk, k ∈ ∂(i)) =
F (xi|xk, k ∈ ∂(i))

|F (xk, k ∈ ∂(i)) |
. (15)

When F (xk, k ∈ ∂(i)) contains no samples, a first-order relaxation is calculation, incor-
porating all subsets of ∂(i) of size |∂(i)| − 1

P (1) (xi|xk, k ∈ ∂(i)) =

⋃

∂′(i)⊂∂(i)

F (xi|xk, k ∈ ∂′(i), |∂′(i)| = |∂(i)| − 1)

∑

∂′(i)⊂∂(i)

|F (xk, k ∈ ∂′(i), |∂′(i)| = |∂(i)| − 1) |
. (16)

If the first-order relaxation is also undefined, the second-order relaxation incorporating
all subsets of ∂(i) of size |∂(i)| − 2 is evaluated, and so on, until a valid probability
distribution is found. In the worst case, the entire neighborhood ∂(i) is ignored

P (|∂(i)|) (xi|xk, k ∈ ∂(i)) = P (xi) , (17)

and the current sampling iteration degenerates to sampling from the marginal distribu-
tion of xi, as univariate EDAs do.

3.4 Replacement

The Replaced · PopSize (where Replaced ∈ (0, 1]) chromosomes in the population with
the lowest fitness are replaced by newly created chromosomes. This step implements
an elitist strategy by which the top (1− Replaced) · PopSize chromosomes are preserved
between iterations.

The processes described in this section are the essential components of the
MARLEDA algorithm. In the next section their performance is tested on several com-
binatorial optimization tasks, and found to perform well compared to the standard GA
and an advanced EDA.

TR-13-18 11

4 Experimental Results

In this section MARLEDA’s performance is tested on four combinatorial optimization
tasks. The first three tasks, OneMax, deceptive trap functions, and the Rosenbrock
function, are standard benchmark tasks for optimization algorithms. The last task,
optimization of Ising spin glass systems, is a difficult optimization task in statistical
physics. MARLEDA’s performance is compared against two readily available optimiza-
tion suites: the GENEsYs (Bäck, 1992) implementation of a standard GA, to provide an
expected performance baseline, and the Bayesian optimization algorithm (BOA; Pelikan
et al., 1999) with decision graphs, to provide a comparison with a state-of-the-art search
method.

In addition to the GENEsYs, BOA, and MARLEDA algorithms, two vari-
ants of MARLEDA are evaluated where applicable. The first MARLEDA variant,
MARLEDA-mutation, disables mutation. Most EDAs lack a traditional mutation op-
erator, thus MARLEDA-mutation’s performance illuminates mutation’s contribution to
MARLEDA and its relevance in EDA methods. The second variant, MARLEDA+model,
disables MRF learning and uses a fixed MRF neighborhood system based on the known
domain structure of the task. By removing the need for model learning, this variant
evaluates MARLEDA’s ability to successfully exploit an ideal model.

In order to fairly gauge each algorithm’s search capability, all algorithms were sub-
ject to a limit on the number of fitness function evaluations permitted during each ex-
periment. So that each algorithm could best use this limited resource, each algorithm’s
parameters were tuned to optimize final solution quality. Tuning proceeded via simple
gradient ascent: beginning with reasonable or documented parameter settings, slightly
perturbed settings were evaluated, continuing until no further improvement in solution
quality was achieved. In cases where multiple parameter settings resulted in equivalent
solution quality, preference was given to those producing more rapid progress. While
this procedure does not guarantee that the resulting parameter settings documented in
this section are optimal, they reliably lead to good performance.

4.1 OneMax

The OneMax problem is an extremely simple optimization problem for binary strings.
The goal is to maximize the the number of “on” bits, i.e. maximize

f(x) =

n
∑

i=1

xi.

There are no dependencies among genes for this task, thus OneMax is not a par-
ticularly interesting problem for EDAs. It is included only to provide a performance
baseline for the next optimization problem, deceptive trap functions.

In this experiment, binary strings of 300 bits were optimized, with each algorithm
limited to 10,000 fitness function evaluations. The following individual algorithm pa-
rameters were used:

GENEsYs : population size = 200, full population selection, uniform crossover, elitism,
Whitley rank selection with α = 2.0, mutation rate = 0.004, crossover rate = 1.0,
and generation gap = 1.0.

BOA : population size = 200, offspring percentage = 10, tournament size = 1, and
max incoming links = 1.

12 TR-13-18

 160

 180

 200

 220

 240

 260

 280

 300

 0 2500 5000 7500 10000

F
itn

es
s

S
co

re

Fitness Evaluations

MARLEDA+model

MARLEDA
MARLEDA-mutation

BOA
GENEsYs

Figure 3: Learning curves of the median best population member in 100 independent
trials for an instance of OneMax with 300 bits. All algorithms easily find the optimum
solution, with MARLEDA demonstrating a moderate advantage in learning time.

MARLEDA : PopSize = 150, Parents = 0.6, TournSize = 3, ModelAdds = 3000, Mod-

elAddThresh = 0.8, ModelSubs = 2000, ModelSubThresh = 0.6, MonteIters = 1500,
Mutation = 0.01, and Replaced = 0.1.

MARLEDA-mutation : PopSize = 300, Parents = 0.65, TournSize = 2, ModelAdds =
3000, ModelAddThresh = 0.8, ModelSubs = 2500, ModelSubThresh = 0.6, MonteIters

= 1500, and Replaced = 0.05.

MARLEDA+model : PopSize = 250, Parents = 0.3, TournSize = 3, MonteIters = 750,
Mutation = 0.0, and Replaced = 0.4.

Figure 3 shows the median best fitness score during the course of evolution over
100 independent trials of each algorithm. While all algorithms easily find the optimal
OneMax solution, it is interesting to note the effect of mutation on the three instances of
MARLEDA. The parameter tuning process discovered that standard MARLEDA per-
formed best with a small amount of mutation. Without mutation, MARLEDA-mutation’s
rate of progress is slightly worse than that of standard MARLEDA. Interestingly, when
provided the true univariate model (i.e. no dependencies among genes) of the domain,
MARLEDA+model performed best without mutation.

MARLEDA+model is able to find the optimum solution with several hundred fewer
evaluations than MARLEDA. However, the rate of progress is initially worse than that
of MARLEDA. The coincidental dependencies between bits that standard MARLEDA
identifies initially boost its performance but then hinder it as “off” bits are mistakenly
preserved. Without an ideal model, mutation contributes to MARLEDA’s performance
on this, albeit simple, task.

4.2 Deceptive Trap Functions

Deceptive trap functions (Deb and Goldberg, 1992) are multimodal functions designed
such that local gradient information will tend to lead optimization algorithms toward
local optima and away from global optima. Search algorithms must therefore have the
capacity to escape local optima if there is to be any chance of identifying global optima.

TR-13-18 13

For EDAs, this means learning the deceptive elements in order to avoid local “trap”
optima.

A standard class of trap function is a variant of OneMax where blocks of bits have
two local optima, only one of which contributes to the global optimum of the function.
Let α be the block size of the trap. Then

u(x, k) =
αk
∑

i=α(k−1)+1

xi,

fα(x, k) =

{

α− u(x, k)− 1 if u(x, k) < α

α if u(x, k) = α, and

f(x) =

n

α
∑

i=1

fα(x, i).

Within each block of α bits, only one of the 2α possible bit combinations is part of the
global optimum. All other bit combinations guide search toward local trap optima. As
the trap size increases the components of the global optimum become more rare and
thus more difficult for search to discover. For small trap sizes this problem presents an
interesting challenge for optimizers, which must weigh the abundant evidence of trap
optima against the scarce evidence of the global optimum.

In this experiment, binary strings of 300 bits were optimized for traps of size three
bits and five bits. Each algorithm was limited to 20,000 fitness function evaluations. For
traps of size three the following algorithm parameters were used:

GENEsYs : population size = 250, full population selection, uniform crossover, elitism,
Whitley rank selection with α = 2.0, mutation rate = 0.0, crossover rate = 1.0, and
generation gap = 1.0.

BOA : population size = 250, offspring percentage = 10, tournament size = 1, and
max incoming links = 1.

MARLEDA : PopSize = 450, Parents = 0.85, TournSize = 3, ModelAdds = 3000,
ModelAddThresh = 0.8, ModelSubs = 2000, ModelSubThresh = 0.6, MonteIters =
1500, Mutation = 0.0, and Replaced = 0.15.

MARLEDA+model : PopSize = 400, Parents = 0.65, TournSize = 4, MonteIters = 1500,
Mutation = 0.01, and Replaced = 0.6.

For traps of size five the following algorithm parameters were used:

GENEsYs : population size = 100, full population selection, uniform crossover, elitism,
Whitley rank selection with α = 2.0, mutation rate = 0.005, crossover rate = 0.5,
and generation gap = 1.0.

BOA : population size = 600, offspring percentage = 10, tournament size = 5, and
max incoming links = 3.

MARLEDA : PopSize = 300, Parents = 0.1, TournSize = 3, ModelAdds = 3000, Mod-

elAddThresh = 0.8, ModelSubs = 2000, ModelSubThresh = 0.6, MonteIters = 1500,
Mutation = 0.015, and Replaced = 0.65.

MARLEDA+model : PopSize = 1400, Parents = 0.7, TournSize = 3, MonteIters = 2500,
Mutation = 0.005, and Replaced = 0.5.

14 TR-13-18

 160

 180

 200

 220

 240

 260

 280

 300

 0 5000 10000 15000 20000

F
itn

es
s

S
co

re

Fitness Evaluations

3-bit Trap

MARLEDA+model

MARLEDA
BOA

GENEsYs
 160

 180

 200

 220

 240

 260

 280

 300

 0 5000 10000 15000 20000

F
itn

es
s

S
co

re

Fitness Evaluations

5-bit Trap

MARLEDA+model

MARLEDA
GENEsYs

BOA

Figure 4: Learning curves of the median best population member in 100 independent tri-
als for 300-bit instances of deceptive trap function. The differences in median best fitness
at the end of evolution are statistically significant (as computed by the Wilcoxon rank-
sum test with a confidence greater then 99%) in the 5-bit trap domain for all algorithm
pairs except GENEsYs/MARLEDA. In the 3-bit trap scenario, the modeling capabilities
of the EDAs allow then to outperform the standard GA. In the 5-bit trap scenario, the
EDAs only achieve marginal solution gains over the GA. However, when provided an
accurate model of the domain, MARLEDA+model can readily find the optimal solution
in the majority of trials. As domain complexity increases and the potential to become
trapped in local optima rises, utilizing an accurate model is critically important.

Figure 3 shows the median best fitness score during the course of evolution over 100
independent trials of each algorithm. In the case of traps of size three, all algorithms
routinely discover the optimum solution, though the rate of progress is notably slower
than in OneMax.

For traps of size five, all algorithms ignorant of the true structure of the domain are
unable to find the globally optimal solution. The algorithms instead identify trap optima,
where each block of five bits has converged to its second local optimum. Resulting
fitness scores are at least 300 · 45 = 240, because a few of the blocks have been correctly

optimized by chance. However, when MARLEDA+model is provided the true structure
of the domain, where each bit is dependent on the four other bits in its block, avoiding
the trap optima and identifying the global optimum ceases to be a problem.

The proportionally slower improvement of MARLEDA+model is an artifact of the
larger population used in that experiment, necessitating more fitness function evaluations
per generation. With a greater trap size, more chromosomes are needed per generation to
accurately cover each trap block. This observation is consistent with previous work where
the necessary population size was shown to increase exponentially with the size of the
trap (Goldberg et al., 1992; Harik et al., 1999). Consequently, the ignorant algorithms
would be likely to find the optimum solution if permitted additional fitness function
evaluations by an order of magnitude or more. Without such evaluations, the parameter
tuning process discovered that those algorithms with mutation operators (GENEsYs
and MARLEDA) were best served by maximizing the total number of generations of
evolution, by minimizing population size, and relying on mutation for search. This
process resulted in some unintuitive parameter shifts, such as the decrease in population
size for MARLEDA from 450 on traps of size three to 300 on traps of size five. Similar
consequences of the fitness function evaluation limit occur on the following optimization
tasks as well.

TR-13-18 15

When provided sufficient fitness evaluations, the EDAs learned and exploited the
domain structure to increase search efficiency. However, when evaluations were limited,
as was forced upon MARLEDA and BOA in the 5-bit trap experiment, MARLEDA’s
performance degraded the most gracefully. As in the OneMax problem, mutation con-
tributes to MARLEDA’s search capability. However, on this deceptive task mutation
remains useful even when the true domain structure is known. The results of this and
the OneMax experiment suggest that mutation is a useful component in EDA methods.

4.3 The Rosenbrock Function

The Rosenbrock function (Rosenbrock, 1960) is a numerical function definable for any
number of dimensions. In two dimensions, the goal is to minimize the function

f(x, y) = (1− x)2 + 100
(

y − x2
)2

.

The function has a global minimum at f(1, 1) = 0, but when x and y are encoded in
binary the resulting discretization of the domain produces many local minima near the
curve y = x2. In addition, there are many overlapping low-order dependencies among
the bits of x and y. Since this domain is much less deceptive than trap functions,
EDAs should be able to exploit the domain structure to perform search efficiently and
distinguish themselves from GAs.

The parameters x and y are encoded in a binary chromosomes as fixed-point num-
bers in the range [0, 4] whose values are then translated to the target domain [−2, 2].
The experiments include chromosomes of 32 bits (16 bits each for x and y) and 64 bits
(32 bits each for x and y). Each run of the experimental algorithms was limited to
20,000 fitness function evaluations. The following parameters were used with the 32-bit
Rosenbrock experiment:

GENEsYs : population size = 200, full population selection, uniform crossover, elitism,
Whitley rank selection with α = 1.9, mutation rate = 0.007, crossover rate = 0.9,
and generation gap = 1.0.

BOA : population size = 800, offspring percentage = 80, tournament size = 2, and
max incoming links = 10.

MARLEDA : PopSize = 400, Parents = 0.85, TournSize = 4, ModelAdds = 3000,
ModelAddThresh = 0.8, ModelSubs = 2000, ModelSubThresh = 0.6, MonteIters =
1000, Mutation = 0.0, and Replaced = 0.7.

The following parameters were used with the 64-bit Rosenbrock experiment:

GENEsYs : population size = 220, full population selection, uniform crossover, elitism,
Whitley rank selection with α = 1.9, mutation rate = 0.005, crossover rate = 1.0,
and generation gap = 1.0.

BOA : population size = 650, offspring percentage = 70, tournament size = 2, and
max incoming links = 12.

MARLEDA : PopSize = 450, Parents = 0.8, TournSize = 4, ModelAdds = 3000, Mod-

elAddThresh = 0.8, ModelSubs = 2000, ModelSubThresh = 0.6, MonteIters = 1000,
Mutation = 0.03, and Replaced = 0.8.

MARLEDA-mutation : PopSize = 700, Parents = 0.6, TournSize = 3, ModelAdds =
3000, ModelAddThresh = 0.8, ModelSubs = 2000, ModelSubThresh = 0.6, MonteIters

= 1000, and Replaced = 0.8.

16 TR-13-18

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

 0 5000 10000 15000 20000

F
itn

es
s

S
co

re

Fitness Evaluations

32 bits

GENEsYs
BOA

MARLEDA

10-20
10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

 0 10000 20000 30000

F
itn

es
s

S
co

re

Fitness Evaluations

64 bits

GENEsYs
MARLEDA-mutation

BOA
MARLEDA

Figure 5: Learning curves of the median best population member in 100 indepen-
dent trials for Rosenbrock instances of 32 and 64 bits. The differences in median
best fitness at the end of evolution are statistically significant (as computed by the
Wilcoxon rank-sum test with a confidence greater then 99%) in the 32-bit domain for
GENEsYs/BOA, GENEsYs/MARLEDA-mutation, and GENEsYs/MARLEDA. Differ-
ences are statistically significant in the 64-bit domain for all algorithm combinations
except MARLEDA-mutation/BOA. In this domain of relatively low deception, the EDAs
are able to learn and exploit domain structure, allowing them to find results vastly
superior to more localized GA search.

Figure 5 shows the median best fitness score found by each algorithm over 100 inde-
pendent trials. Both MARLEDA and BOA perform well on this task, with MARLEDA
demonstrating a distinct advantage in both learning rate and final quality. In the 32-
bit domain, MARLEDA’s and BOA’s median best chromosome quickly approaches the
second lowest fitness score possible, represented by the flat region of the respective fit-
ness curves near 15,000 evaluations. This score corresponds to the most deceptive of
the local minima in the domain, with a Hamming distance of 29 bits from the global
minimum. The vertical segment of the fitness curves shows the point where the median
best chromosome is the global optimum. Due to the logarithmic scale of the graphs, the
learning curves appear to “fall off” the graph.

The 64-bit domain shows even greater separation between MARLEDA, BOA, and
GENEsYs. The encoding of the two numerical coordinates presents a significant hurdle
for local search methods such as GENEsYs. While the fitness landscape of the Rosen-
brock function is smooth in numerical space, it is quite rough in configuration space.
A small change in numerical space may result in a large change in configuration space,
and vice versa. The structure-exploiting approach of the EDAs allowed them to find
better solutions, with MARLEDA performing significantly better than BOA. Its ability
to exploit the structure of the configuration space to correctly optimize many bits at
once is crucial to good performance.

It is interesting to note that without mutation on 64-bit Rosenbrock,
MARLEDA-mutation performs very similarly to BOA, which also has no mutation oper-
ator. Mutation proves to be useful yet again.

4.4 Ising Spin Glasses

Ising spin glasses (Ising, 1925) are a model of magnetic materials developed in statistical
physics and have been extensively used as EDA benchmarks. A set of spins, {s1, . . . , sn},
exist in one of two states, +1 or −1, and each spin is coupled to a set of neighboring
spins. An instance of an Ising spin glass system is defined by a set of coupling constants,

TR-13-18 17

{Ji,j : i, j ∈ {1, . . . , n}}, that encapsulate the neighbor relationships. A coupling con-
stant Ji,j is non-zero if si and sj are neighbors. In these experiments, coupling constants
are restricted to values of +1, 0, and −1. The goal is to find a set of spin states that
minimizes the Hamiltonian of the system:

H = −
n
∑

i,j=1

Ji,jsisj .

Minimizing the Hamiltonian implies that neighboring spins should tend to exist in
the same state if their coupling constant is +1 and in differing states if their coupling
constant is −1. However, conflicting coupling constants among groups of spins prevent
this rule from being applied fully. Consequently, groups of spins may have locally optimal
states that are quite different from the globally optimal spin states, or ground states.
This property makes spin glass systems a difficult partially deceptive search task.

To test the scalability of MARLEDA, the Ising spin glass systems used in these
experiments contain the most parameters of any optimization experiment presented in
this paper. Though there is plenty of domain structure for EDAs to exploit, the volume of
information will likely make learning an effective model difficult. Five hundred instances
of Ising spin glass systems with 400 spins and 900 spins were randomly generated. Each
instance was arranged in a two-dimensional square lattice (20 × 20 or 30 × 30) with
periodic boundary conditions. Each spin was neighbored by the adjacent spin above,
below, to the left, and to the right. The coupling constants for neighboring spins were
uniformly sampled from {+1,−1}, with all other coupling constants set to 0, thus each
instance was drawn from the region of spin glass system space known to contain a
comparatively high density of difficult instances (Liers et al., 2003, 2004). The set of
spin states was encoded in a binary chromosome with one bit per spin state.

Each run of the experimental algorithms was limited to 20,000 fitness function
evaluations in the 400 spin domain and 60,000 fitness function evaluations in the 900
spin domain. The following parameters were used in all trials of 400 spins:

GENEsYs : population size = 100, full population selection, uniform crossover, elitism,
Whitley rank selection with α = 2.0, mutation rate = 0.006, crossover rate = 1.0,
and generation gap = 1.0.

BOA : population size = 500, offspring percentage = 13, tournament size = 3, and
max incoming links = 2.

MARLEDA : PopSize = 400, Parents = 0.85, TournSize = 4, ModelAdds = 3000,
ModelAddThresh = 0.8, ModelSubs = 2000, ModelSubThresh = 0.6, MonteIters =
1000, Mutation = 0, and Replaced = 0.7.

MARLEDA+model : PopSize = 900, Parents = 0.75, TournSize = 2, MonteIters = 2400,
Mutation = 0.005, and Replaced = 0.25.

The following parameters were used in all trials of 900 spins:

GENEsYs : population size = 130, full population selection, uniform crossover, elitism,
Whitley rank selection with α = 2.0, mutation rate = 0.0025, crossover rate = 1.0,
and generation gap = 1.0.

BOA : population size = 700, offspring percentage = 75, tournament size = 3, and
max incoming links = 6.

18 TR-13-18

-600

-500

-400

-300

-200

-100

 0

 0 5000 10000 15000 20000

F
itn

es
s

S
co

re

Fitness Evaluations

400 Spins

BOA
GENEsYs

MARLEDA
MARLEDA+model

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0 20000 40000 60000

F
itn

es
s

S
co

re

Fitness Evaluations

900 Spins

BOA
GENEsYs

MARLEDA
MARLEDA+model

Figure 6: Representative learning curves of the median best fitness in 100 independent
trials for an instance of an Ising spin glass system of 400 spins and 900 spins. The
differences in median best fitnesses at the end of evolution are statistically significant
(as computed by the Wilcoxon signed-rank test, with a confidence greater than 99%)
for all algorithm combination except GENEsYs/MARLEDA in both the 400 spin and
900 spin domains. MARLEDA’s Markov random field model naturally represents the
relationships in the spin glass domain, resulting in improved performance compared to
BOA.

MARLEDA : PopSize = 700, Parents = 0.75, TournSize = 3, ModelAdds = 3500,
ModelAddThresh = 0.8, ModelSubs = 2000, ModelSubThresh = 0.6, MonteIters =
1500, Mutation = 0, and Replaced = 0.9.

MARLEDA+model : PopSize = 1000, Parents = 0.95, TournSize = 3, MonteIters =
2400, Mutation = 0.004, and Replaced = 0.1.

Each algorithm was run 100 times on each of the 1000 randomly generated spin
glass instances. Figure 6 shows the median best fitness score over the 100 trials found
by each algorithm on one particular instance. Nearly all instances resulted in similar
learning curves, thus figure 6 is representative.

All algorithms ignorant of the true domain structure discover solutions of nearly the
same quality, with the exception of BOA on system of 900 spins. Unlike the Rosenbrock
function, two-dimensional lattice spin glass systems are amenable to local search tech-
niques, shown by GENEsYs’s good performance. However, local search does not lead
to global optima. The optimal fitness score for each instance was determined using the
Spin Glass Ground State Server at the University of Köln (Koln, 2004). The solutions
routinely discovered by MARLEDA and GENEsYs have fitness scores only 80%–85% of
optimal. The deceptive qualities of this domain were not completely overcome.

The EDAs exhibit a curiously slow start, which is caused by poor initial learned
models. The complexity of the domain coupled with the relatively large number of
parameters make it difficult for the EDAs to identify dependencies among parameters.
The learned models therefore did not promote high-fitness chromosomes during sampling
and tended to reproduce low-fitness aspects of the population. However, once the models
were sufficiently refined solution quality improved rapidly.

In contrast to BOA and standard MARLEDA, MARLEDA+model performed very
well. The lattice structure of the spin glass systems forms a natural MRF neighborhood
system. When provided with this system, MARLEDA+model was able to routinely dis-
cover the ground state of systems of 400 spins and come to within 1%-2% of the ground
state of systems of 900 spins. Though these experiments are constructed differently,

TR-13-18 19

the performance results are consistent with the experiments of Shakya et al. (2006);
exploiting the structure of spin glass systems is key to solving them efficiently. Using
an accurate model, MARLEDA+model successfully scaled up to this large optimization
tasks. This result also suggests that improving MARLEDA’s model learning procedure
is the single greatest opportunity for increasing MARLEDA’s effectiveness.

5 Discussion & Future Work

The experiments presented in this paper show that the Markov random field model em-
ployed by MARLEDA is a promising alternative to the DAG-based methods commonly
used in EDAs. It allows MARLEDA to perform better than BOA in a variety of test
domains.

Good performance on the Ising spin glass domain is particularly encouraging be-
cause it is a difficult real world problem. Moreover, the comparison of GAs and EDAs
is particularly insightful for two reasons. First, it suggests that it may be possible
to improve performance of EDAs by combining them with local search techniques, as
suggested by Pelikan et al. (2006). Second, it demonstrates the cost associated with
building the probabilistic model. Both MARLEDA and BOA must discover reliable
models before evolution can progress rapidly. This process takes place during the first
8,000–13,000 fitness evaluations, in the 400 spin domain, or the first 20,000–30,000 fit-
ness evaluations, in the 900 spin domain, while the fitness improves only slightly (figure
6). Once the model is sufficiently accurate, performance improves very rapidly, faster
than that of GENEsYs.

MARLEDA’s MRF model, which naturally represents the dependencies of the spin
glass domain, enables MARLEDA to learn an effective statistical model more quickly
than BOA. Both algorithms initially optimize small, localized groups of spins before
addressing the larger system. This progression requires each algorithm to learn a model
organized around small groups of spins. As evolution progresses, the model must ex-
pand to allow optimization across larger sets of spins, forming numerous intricate sets
of dependencies. For BOA’s directed graph model, this process causes many learned
dependencies supporting locally good fitness to be lost, either to preserve the acyclic
property of the graph or to change the direction of dependency. MARLEDA’s model,
on the other hand, does not need to destroy learned dependencies in favor of new ones,
allowing more rapid optimization across the entire system.

The MARLEDA approach can be further improved in two main ways. First, the
MRF neighborhood system can be constructed in a more principled manner. For exam-
ple, at each iteration of the algorithm a set of new neighbor relations forming a (partial)
minimum spanning tree across non-neighbor random variables could be added to the
neighborhood system. Such an approach would bias the model learning process towards
global connectivity, potentially improving performance on some tasks.

Second, the MRF could be sampled more efficiently and more accurately. The
current Monte Carlo technique does not scale well as population size increases. Alter-
natives include using the Metropolis-Hastings algorithm (Hastings, 1970) and sampling
via the equivalent Gibbs random field (Hammersley and Clifford, 1971; Besag, 1974).
Such methods should provide better computational performance and sampling accuracy,
resulting in a more powerful algorithm overall.

EDAs’ ability to tackle difficult combinatorial optimization problems makes them
strong candidates for application to real-world problems in the near future. Domains of
daunting complexity, such as those in computational biology, could greatly benefit from
techniques that inherently learn and exploit the underlying statistical structure of the

20 TR-13-18

domain. The volumes of biological data regarding molecular sequences and structures of
proteins, DNA, and RNA are particularly promising domains. Applying MARLEDA to
molecular structure prediction is therefore a most interesting direction for future work.

6 Conclusions

This paper presents the Markovian Learning Estimation of Distribution Algorithm, a
new estimation of distribution algorithm based on Markov random fields. An MRF
model allows MARLEDA to efficiently handle optimization tasks involving complex
structural dependencies. Experiments with four combinatorial optimization tasks sug-
gest that MARLEDA can indeed successfully learn and use such a model, resulting
in improved computational search. The approach should be particularly powerful in
complex optimization tasks in nature, such as those in computational biology.

7 Acknowledgments

This research was supported in part by NSF under grant EIA-0303609.

TR-13-18 21

References

Alden, M., van Kesteren, A.-J., and Miikkulainen, R. (2002). Eugenic evolution utiliz-
ing a domain model. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pages 279–286, San Francisco, CA. Morgan Kaufmann.

Bäck, T. (1992). A User’s Guide to GENEsYs 1.0. Department of Computer Science,
University of Dortmund.

Baluja, S. (1994). Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Technical Report
CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA.

Baluja, S. and Davies, S. (1997). Using optimal dependency-trees for combinatorial
optimization: Learning the structure of the search space. Technical Report CMU-CS-
97-107, Carnegie Mellon University.

Baluja, S. and Davies, S. (1998). Fast probabilistic modeling for combinatorial optimiza-
tion. In Proceedings of the 15th National Conference on Artificial Intelligence and the
10th Annual Conference on Innovative Applications of Artificial Intelligence, Menlo
Park, CA. AAAI Press.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society, Series B, 36:192–236.

Cooper, G. and Herskovits, E. (1992). A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9:309–347.

De Bonet, J., Isbell, C., and Viola, P. (1997). MIMIC: Finding optima by estimating
probability densities. In Advances in Neural Information Processing, volume 9. MIT
Press, Cambridge, MA.

Deb, K. and Goldberg, D. (1992). Analyzing deception in trap functions. In Foundations
of Genetic Algorithms, pages 93–108. Morgan Kaufmann, San Francisco, CA.

Etxeberria, R. and Larrañaga, P. (1999). Global optimization with Bayesian networks.
In Proceedings of the Second Symposium on Artificial Intelligence, pages 332–339.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA.

Goldberg, D. and Deb, K. (1990). A comparative analysis of selection schemes used
in genetic algorithms. In Foundations of Genetic Algorithms, pages 69–93. Morgan
Kaufmann, San Francisco, CA.

Goldberg, D., Deb, K., and Clark, J. (1992). Genetic algorithms, noise, and the sizing
of populations. Complex Systems, 6:333–362.

Hammersley, J. and Clifford, P. (1971). Markov field and finite graphs and lattices.
unpublished.

Harik, G. (1999). Linkage learning via probabilistic modeling in the EcGA. Technical
Report 99010, IlliGAL, University of Illinois at Urbana-Champaign.

22 TR-13-18

Harik, G., Cantú-Paz, E., Goldberg, D., and Miller, B. (1999). The gambler’s ruin
problem, genetic algorithms, and the sizing of populations. Evolutionary Computation,
7(3):231–253.

Harik, G., Lobo, F., and Goldberg, D. (1998). The compact genetic algorithm. In
Proceedings of the IEEE Conference on Evolutionary Computation, volume 3, pages
523–528.

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57:97–109.

Heckerman, D., Geiger, D., and Chickering, M. (1995). Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20:197–243.

Holland, J. (1975). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. University
of Michigan Press, Ann Arbor, MI.

Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift fur Physik,
31:253–258.

Jensen, F. (2001). Bayesian Networks and Decision Graphs. Springer.

Koln (University of Köln, Germany, 2004). Spin Glass Ground State Server. http:

//www.informatik.uni-koeln.de/ls_juenger/research/spinglass/.

Li, S. (2001). Markov Random Field Modeling in Image Analysis. Springer, second
edition.

Liers, F., Jünger, M., Reinelt, G., and Rinaldi, G. (2004). Computing exact ground
states of hard Ising spin glass problems by branch-and-cut. In New Optimization
Algorithms in Physics, pages 47–68. Wiley.

Liers, F., Palassini, M., Hartmann, A., and Jüenger, M. (2003). Ground state of the
Bethe-lattice spin glass and running time of an exact optimization algorithm. Physical
Review B, 68(9):094406.

Mühlenbein, H. (1997). The equation for response to selection and its use for prediction.
Evolutionary Computation, 5(3):303–346.

Mühlenbein, H. and Mahnig, T. (1999a). The factorized distribution algorithm for
additively decompressed functions. In Proceedings of the Congress on Evolutionary
Computation, pages 752–759.

Mühlenbein, H. and Mahnig, T. (1999b). FDA - A scalable evolutionary algorithm
for the optimization of additively decomposed functions. Evolutionary Computation,
7(4):353–376.

Mühlenbein, H. and Mahnig, T. (2001). Evolutionary computation and beyond. In
Foundations of Real-World Intelligence, pages 123–186. CLSI Publications, Stanford,
CA.

Mühlenbein, H. and Paaß, G. (1996). From recombination of genes to the estimation of
distributions I. Binary parameters. In Proceedings of the 4th International Conference
on Parallel Problem Solving from Nature (PPSN IV), pages 178–187, London, UK.
Springer-Verlag.

TR-13-18 23

Pearl, J. (2000). Causality. Cambridge University Press.

Pelikan, M. and Goldberg, D. (2001). Hierarchical Bayesian optimization algorithm =
Bayesian optimization algorithm + niching + local structures. In Optimization by
Building and Using Probabilistic Models (OBUPM) 2001, pages 217–221.

Pelikan, M., Goldberg, D., and Cantú-Paz, E. (1999). BOA: The Bayesian optimization
algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), volume I, pages 525–532, San Francisco, CA. Morgan Kaufmann.

Pelikan, M., Hartmann, A., and Sastry, K. (2006). Hierarchical BOA, cluster exact
approximation, and Ising spin glasses. Technical Report Missouri Estimation of Dis-
tribution Algorithms Laboratory (MEDAL) No. 2006002, University of Missouri in
St. Louis, St. Louis, MO.

Pelikan, M. and Mühlenbein, H. (1999). The bivariate marginal distribution algorithm.
In Advances in Soft Computing - Engineering Design and Manufacturing, pages 521–
535. Springer-Verlag, London, UK.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical Recipes in
C. Cambridge University Press, Cambridge, UK, second edition.

Prior, J. (1998). Eugenic evolution for combinatorial optimization. Master’s thesis,
Department of Computer Sciences, The University of Texas at Austin, Austin, TX.

Rosenbrock, H. (1960). An automatic method for finding the greatest or least value of
a function. The Computer Journal, 3:175–184.

Santana, R. (2003). A Markov network based factorized distribution algorithm for
optimization. In Machine Learning: ECML 2003, pages 337–348. Springer.

Santana, R. (2005). Estimation of distribution algorithms with Kikuchi approximations.
Evolutionary Computation, 13(1):66–97.

Shakya, S. (2006). DEUM: A framework for an Estimation of Distribution Algorithm
based on Markov Random Fields. PhD thesis, The Robert Gordon University, Ab-
erdeen, UK.

Shakya, S., McCall, J., and Brown, D. (2005). Using a Markov network model in a
univariate EDA: An empirical cost-benefit analysis. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), volume I, pages 727–734.

Shakya, S., McCall, J., and Brown, D. (2006). Solving the Ising spin glass problem using
a bivariate EDA based on Markov random fields. In Proceedings of the Congress on
Evolutionary Computation, pages 908–915.

Syswerda, G. (1992). Simulated crossover in genetic algorithms. In Foundations of
Genetic Algorithms, pages 239–255. Morgan Kaufmann, San Francisco, CA.

Winkler, G. (2003). Image Analysis, Random Fields and Markov Chain Monte Carlo
Methods. Springer, second edition.

Yates, F. (1934). Contingency table involving small numbers and the χ2 test. Journal
of the Royal Statistical Society, Supplement 1:217–235.

24 TR-13-18

