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Abstract

In this paper we introduce The Eugenic Algo-
rithm with Modeling (TEAM), an evolutionary
search algorithm that employs statistical analy-
sis to promote construction of high-fitness chro-
mosomes. A model of gene/fitness correlations
is automatically generated to direct the construc-
tion process. When applied to the combinatorial
optimization problems of finding a maximally
weighted cut in a graph and minimizing the two-
dimensional Rosenbrock function, TEAM per-
forms well compared to other evolutionary algo-
rithms at evolving high-fitness solutions.

1 INTRODUCTION

The field of combinatorial optimization focuses on prob-
lems with a finite number of possible solutions. For
many such problems, an optimal solution cannot be found
analytically, or the problem is too large for exhaustive
search. This class of interesting problems includes the
traveling salesman problem, maximally weighted cut in
a graph, integer programs, the subset sum problem, and
maximal clique in a graph. Near-optimal solutions can
often be found reasonably fast using techniques such as
hill-climbing and simulated annealing (SA; Kirkpatrick &
Sherrington, 1988). These standard techniques operate by
incrementally improving suboptimal solutions. Evolution-
ary algorithms, which utilize optimization strategies mod-
eled after biological evolution, implement a more global
search and have been shown to be particularly powerful on
combinatorial optimization problems.

Numerous evolutionary algorithms have been designed to
operate on a population of binary chromosomes, a con-
venient structure for encoding solutions to combinatorial
problems. The traditional approach, exemplified by genetic
algorithms (GAs; Holland, 1975), produces new chromo-

somes via recombination of existing chromosomes, with a
component of mutation. The information inherited by a
single new chromosome is derived from only a small per-
centage of the total information present in the population.

Recently, evolutionary algorithm research has progressed
towards increasingly constructive techniques for generat-
ing new chromosomes. Among these algorithms are Bi-
nary Simulated Crossover (BSC; Syswerda, 1993), Popu-
lation Based Iterative Learning (PBIL; Baluja, 1994), and
the Eugenic Algorithm (EuA; Prior, 1998). These algo-
rithms construct chromosomes based on information in the
entire chromosome population. A probability indicating al-
lele preference is calculated for every gene, and these prob-
abilities are then used to bias the allele selection process
towards an estimated ideal chromosome.

This paper presents a second-generation constructive al-
gorithm, The Eugenic Algorithm with Modeling (TEAM),
that applies statistical methods to the identification of de-
sirable alleles. A model of gene/fitness correlations is built
and used during chromosome construction to aid allele se-
lection.

We next describe the TEAM algorithm. In Section 3
we present and discuss the results of applying TEAM to
two combinatorial optimization problems, finding a max-
imally weighted cut in a graph and minimizing the two-
dimensional Rosenbrock function (De Jong, 1975), show-
ing that TEAM performs better than stochastic hillclimber,
standard GA, and EuA. Finally, we speculate how the algo-
rithm might be improved by using different statistical tests
and generalizing the model.

2 TEAM

2.1 OVERVIEW

At a high level, TEAM operates similar to other GAs.
A population of chromosomes is evolved based on feed-
back from a chosen chromosome evaluation function,
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Augmenting the standard chromosome population, TEAM
maintains a gene/fitness correlation model, hereafter re-
ferred to as the model, and several sets of fitness values
used in updating the model, hereafter referred to as the
model statistics. For every gene, these additional structures
are used to estimate the allele with the greatest likelihood
of producing a high-fitness chromosome.

The algorithm begins by initializing three data sets as fol-
lows: (1) build the initial population, (2) initialize the
model statistics based on the initial population, (3) initial-
ize the model based on the model statistics. Population
evolution proceeds via repetition of the following steps: (1)
create a new chromosome, (2) select and replace an existing
chromosome in the population with the new chromosome,
(3) update the model statistics using the new chromosome,
(4) reconstruct the model if necessary. Evolution termi-
nates after a specified number of generations has elapsed.

Chromosome creation involves assigning an allele to ev-
ery gene in the genome. The first genes assigned are those
with the strongest observed influence on fitness. The allele
with the strongest observed correlation to high fitness is as-
signed to each gene. Allele/fitness correlation is partially
based on previous allele assignments, therefore a partially
constructed chromosome contributes to its own construc-
tion.

After the entire chromosome has been constructed, a chro-
mosome in the existing population is selected for extinction
by one of several heuristics. The selected chromosome is
removed from the population, and the newly constructed
chromosome added. The model statistics are updated with
information about the new chromosome. The model is up-
dated periodically, after a specified number of elapsed gen-
erations since the previous update.

2.2 CHROMOSOME CREATION

Chromosome creation involves ordering the genes and then
assigning an allele to every gene. The assignment of an
allele � to gene ��� is called a �����
	����� , written ������� .
For binary chromosomes, ������������� . A chromosome

�
of

length � is defined by a set of bindings, � ���! � �"�$# ��%�%�%"� �!��& � ,
where

�"�$'
is the allele of gene � � in chromosome

�
. A chro-

mosome
�

is said to satisfy a set of bindings ( if for every
binding � � �)� in ( ,

�"�$' �*� .

The first step of chromosome creation, gene ordering, is
based on +-,.�/, �"0 ��12� 0�3 . The selectivity of a gene is an es-
timation of how clearly the observed fitness values in the
population suggest a particular allele for that gene. For
example, if the set of fitness values of chromosomes sat-
isfying binding ���4�5� is �6�.76���.86�-��9��-�.:�� , and the set of
fitness values of chromosomes satisfying binding �6�;�<� is�6�-=��-��>��!7��?��7�@6� , then the gene has high selectivity; the al-

lele 1 appears to consistently lead to higher fitness chromo-
somes. Alternatively, if the respective sets of fitness values
were ���-76�-�-8�����>?��7��2� and ����9?���.:6���-=���7�@2� , the gene’s se-
lectivity would be low. Genes are ordered by decreasing
selectivity. The selectivity of a gene �2� relative to popula-
tion A is estimated by:(B,.� � ������A � � C ��%D��� if EEGF AIHKJ� '/LNM EE?O �QPREEGF AIHSJ� 'SLUT EE�O �0 0 ,�+ 0UV F AIHSJ�$' LNM � F AIHSJ�$' L;T!W � otherwise

�
where F AIH J�$' L
X is the set of fitness values of chromosomes
from population A that satisfy binding �2�I�Y� . Function0 0 ,�+ 0 returns one minus the observed significance level
(OSL) used in Student’s t-test (Press, Teukolsky, Vetter-
ling, & Flannery, 1992), a statistical hypothesis test indi-
cating whether two sample sets are believed to come from
the same normal distribution. A high value for

0 0 ,�+ 0 , near
1, indicates that the sets are probably not from the same
distribution, while a low value, near 0, indicates that there
is insufficient evidence to make that distinction.

Once the genes have been ordered, they are sequentially
bound to alleles in this order. Set Z , initially empty, con-
tains the bindings that define the partially constructed chro-
mosome. As each gene is bound, the resulting binding is
added to set Z .

To select an allele for gene � � , a set Z4[� is first calculated.Z4[� is a subset of Z containing the bindings deemed most
relevant to the pending binding of gene � � . Construction ofZ4[� is described in Section 2.3. An estimate of the allele, � � ,
for gene � � most likely to lead to a high-fitness chromosome
is calculated from Z\[� as:

�]�;�_^ �?� if F AIH J`;a'/b � 'SLNMdc F AIH J`;a'eb � 'SL;T��� otherwise
�

where F AIH `fa' b � '/L
g is the subpopulation of A composed of
chromosomes satisfying all bindings in the set Z [�-h ���U� 3

,
and F AIHSJ`;a'/b �i' L
g is the set of fitness values of chromosomes
in that subpopulation. The gene �2� is bound to allele �j� with
probability �lk Tm � �nko(B,.� � ���p� F AIH `;a' � �rq , otherwise gene ���
is bound to allele �4ks�t� . Parameter u regulates the de-
pendence of allele selection on selectivity. This probabilis-
tic scheme assigns alleles based on confidence in expected
outcome. Statistically influential genes are more likely to
be assigned � � , while genes not appearing to strongly influ-
ence fitness are assigned more randomly. In this way, the
system performs neighborhood search to fine tune less in-
fluential genes. As the last step, to promote diversity, the
binding of gene � � is mutated with probability vw .

2.3 THE MODEL

The model’s primary purpose is provide a basis for esti-
mating gene epistasis (Davidor, 1991). The model records



the observed relative influence of genes on chromosome fit-
ness in a set of gene rankings. Each ranking describes the
influence of a single gene on fitness when used in conjunc-
tion with other genes. For example, a potential model for
a population of chromosomes with four genes might look
like the following: � M�� ��� � T � m� T�� � m � M ���� m � � M � T ������ � � m � M � T %
For each gene, all other genes are sorted based on the quan-
tity

��� � ���r�$�	� � , an estimation of the amount of influence the
combination of genes ��� and �
� has on fitness. An ordered
pair of genes,

� � � � � � � , is considered highly influential if for� � �)� , the set of estimated fitness values of chromosomes
satisfying the bindings �-� � � �?� � � � �j� is statistically
different from the set of estimated fitness values of chro-
mosomes satisfying �-� � � ��� � � � �� . A high

� �
value,

near 1, indicates high influence, and a low value, near 0,
indicates low influence. If

��� � ���p�$� X � c ��� � ��� � � g � then
gene � X appears before gene � g in the entry for gene ��� .��� � ��� � �	� � is calculated as:

��� � ���r�$�	� � � �� ��
�
0 0 ,�+ 0 ��� � 'eLNM � � � '/LNM�� ��� L
M ���0 0 ,�+ 0 ��� � 'eLNM � � � '/LNM�� ��� LUT ���0 0 ,�+ 0 ��� � 'eL;T � � � '/L;T�� ��� L
M ���0 0 ,�+ 0 ���;�$' L;T � �f�i' L;T�� � � LUT �

����
� �

The sets
�

comprise the model statistics.
� � '/L
X

is the set
of fitness values of all previously evaluated chromosomes
that satisfy binding ���U� � . For a chromosome of length � ,
there are 7�� possible single bindings, and therefore 7�� � � '/LfX
sets.

� � '/L
X�� ��� L
g
is the set of fitness values of all evaluated

chromosomes which satisfy bindings �-�2�\� �N�$�	��� 3 � .
There are

� � m such
�f�i' L
X�� � � L
g

sets, though all sets such
that � ��� are unused. These sets

�
act as a global his-

tory; as evolution proceeds the fitness value of every eval-
uated chromosome is a member of � of the

�U�i' L
X
sets and� � �Nk)� � of the

�f�i' L
X�� � � L
g
sets.

�;�$' LfX
and

�;�$' L
X�� � � L
g
are

estimations of the fitness value of any chromosome satis-
fying a specified single or double binding. Although these
sets are incomplete, we assert that they eventually contain
sufficient information to support

� � � ��� � �	� � .
During allele selection, a set Z [� is calculated from set Z ,
the set of bindings comprising a partial chromosome. Let! � '"� � be the ��#�$ gene in the model entry for ��� . Z4[� is
initially empty, and for each gene

! � '"� � in the model en-
try for � � , proceeding via increasing � , we perform the
following test: if

! �$' � � is part of a binding �s� Z andEEE F AIH ` a' b&% EEE(' � w �*) then add � to Z [� . Parameter � w �+) spec-

ifies the minimum number of chromosomes that must be
present in F AIH `;a' .

2.4 REPLACEMENT POLICY

After a new chromosome has been created, an existing
chromosome is selected for removal from the population.
A typical heuristic for extinction is poor fitness, i.e. the
least fit chromosome is removed. However, based on the
information in the model we can make a more intelligent
selection. We can remove the chromosome that contributed
the least to the construction of the new chromosome.

In the course of creating a new chromosome, the sets Z [� are
calculated � times. The more times a chromosome appears
in instances of F AIH `;a' , the more that chromosome has con-
tributed to the construction of the new chromosome. There-
fore, a reasonable extinction heuristic is to remove the chro-
mosome that appeared least often in instances of F AIH `fa' .
This heuristic regards chromosomes as informational units
rather than simple patterns for high fitness, promoting the
retention of information in the population.

These policies are called replace worst fitness and re-
place worst contributor, and they will be tested experi-
mentally below.

3 EXPERIMENTS

TEAM was evaluated on two combinatorial optimization
problems and compared to two standard algorithms as well
as EuA, the predecessor of TEAM.

3.1 ALGORITHMS

3.1.1 Stochastic Hillclimber

A simple Stochastic Hillclimber was used as a strawman
in these experiments. The hillclimber maintains one chro-
mosome. Each generation, a new chromosome is created
solely by mutating the existing chromosome. The proba-
bility of each bit being mutated is specified by parameterv w . If the fitness of the new chromosome is higher than
that of the original chromosome, the original chromosome
is replaced by the new chromosome. Evolution continues
until a specified number of generations has elapsed.

3.1.2 Genetic Algorithm

The GENEsYs-1.0 (Bäck, 1992) GA implementation was
used in these experiments. Fitness-proportionate selec-
tion, elitism, and 2-point crossover were used. The GA
is further parameterized by the population size, � , the per-
chromosome probability of recombination, v � , and the per-
gene probability of mutation, v w .



3.1.3 EuA

The predecessor of TEAM, EuA uses statistical predic-
tors of chromosome fitness without maintaining a model
or model statistics. A detailed description of this algorithm
can be found in (Prior, 1998) and (Polani & Miikkulainen,
2000). This algorithm is parameterized by the population
size, � , the probability of allele selection noise (similar to
mutation), v ) , and the per-gene probability that an extinct
allele will be reintroduced (only applicable when all chro-
mosomes have the same allele for a particular gene), v � .
3.1.4 TEAM

As described in Section 2, TEAM is parameterized by
the population size, � , the minimum number of chromo-
somes to consider during allele selection, �;w �*) , the per-
gene probability of mutation, vw , the selectivity factor, u ,
the model update frequency, � w�������� , and the chromosome
replacement policy, 	 .

3.2 RESULTS

Our two combinatorial optimization test problems differ in
how amenable they are to neighborhood search algorithms.
Finding a maximally weighted cut in a graph, though an
NP-complete problem, has a high degree of hillclimbabil-
ity, making neighborhood searches effective. The Rosen-
brock Function, on the other hand, has many local op-
tima in binary space (Prior, 1998). This problem is very
deceptive, making neighborhood searches less effective.
The algorithms in this paper direct and focus neighborhood
search differently, therefore these problems will illuminate
the algorithms’ strengths and weaknesses.

3.2.1 Maximally Weighted Cut in a Graph

In this problem we wish to partition the vertices of an undi-
rected, weighted graph into two sets, 
 M and 
 T , such that
the sum of weights of all edges having one endpoint in 
 M
and the other endpoint in 
 T is maximal. A feasible solu-
tion to this problem is a partition of the vertices such that
every vertex is a member of 
 M or 
 T , but not both. Given a
graph of � vertices and � edges, we encode a partition as a
binary chromosome of length � . If �2� � � , then vertex � is
a member of 
 M , otherwise � � � � and vertex � is a member
of 
 T .
The sum of weights of all edges crossing the partition is
used as the chromosome evaluation function

�������
. It is cal-

culated as

��� ��� � )� T� � L;T )�� L ��� T�� � � V �!�$'BV �lk �!� � W � �!� � � �lk �!�$' � W �
where � � � is the weight of the edge incident on vertices �

and � , or valued 0 if no such edge exists. The GENEsYs
GA package implicitly minimizes fitness value, therefore
an altered chromosome evaluation function k ������� was
used with that package. The graph was constructed ran-
domly, with edge weights uniformly distributed on F ���-�"H .
Each algorithm was executed 100 times, each evolved for
100,000 generations. The average best fitness value of each
generation is shown in Figure 1. The parameters used
for each algorithm are: Stochastic Hillclimber: v w =0.04;
GA: � =50, v � =0.6, vtw =0.001; EuA: � =100, v ) =0.05,v � =0.01; and TEAM: � =100, �fw �+) =20, vjw =0.01, u =0.6,�Nw�������� =100, 	 =replace worst contributor. These param-
eter values were determined experimentally; small varia-
tions produce roughly equivalent results.

All algorithms tested eventually generated chromosomes of
approximately the same fitness. In this domain of few local
optima, only the curves prior to the plateau are noticeably
different. The hillclimber makes good progress in early
generations, but EuA and TEAM soon catch up and ex-
ceed it in performance. The differences between the final
average best fitness values of the four algorithms, though
relatively small, are statistically significant.

Both of TEAM’s chromosome replacement policies, re-
place worst fitness and replace worst contributor, were
tested on this problem. The replace worst contributor
policy (shown) generated chromosomes with fitness val-
ues approximately 10% better than those under the re-
place worst fitness policy. This result suggests that low-
fitness individuals can contain valuable information, and
are not always the best choice for extinction.

3.2.2 Two-Dimensional Rosenbrock Function

In this problem we wish to minimize the following func-
tion: ��� �
� 3 � � ����� �S3 k�� m � m � � � kR� � m �
where �N� 3 � F k 8�% �.76��8�% �.7.H . A feasible solution to this
problem is a two-dimensional point,

� �N� 3 � , which we en-
code as two floating-point numbers in a chromosome of 64
genes. We calculate the coordinates � and

3
as follows:

� � 8�% �.7��;�lko7 � m� � LUT �?%D8 � �!�i'�� �
3 � 8�% �.7��;�lko7������ L � � �?%D8 ��� � m �!�$'�� %

The coordinate � is encoded in genes 1 through 32, with
gene 1 the most significant bit (MSB) in the floating-point
encoding of � , and gene 32 the least significant bit (LSB).
Similarly, coordinate

3
is encoded in genes 33 through 64,

with gene 33 the MSB and gene 64 the LSB.
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Figure 1: Average Best Fitness of 100 Runs Maximizing Cut Weight Over 100,000 Generations. In this problem with
relatively few local maxima, the hillclimber makes good progress early on, but is eventually exceeded by EuA and TEAM.
The final fitness differences are statistically significant ���������	��
�� .

All algorithms used a chromosome evaluation function
based directly on the Rosenbrock function value, ��������
���������� . 100 runs were performed for each algorithm, each
evolved for 50,000 generations. The average best fitness
value of each generation is shown in Figure 2. The param-
eters used for each algorithm are: Stochastic Hillclimber:
��� =0.3; GA: � =50, ��� =0.6, ��� =0.016; EuA: � =100,
��� =0.1, �� =0.01; and TEAM: � =100, �!�" #� =20, ��� =0.01,$ =0.2, %&�"'�(*),+ =100, - =replace worst fitness. These pa-
rameter values were again determined experimentally, and
small variations produce roughly equivalent results.

In this problem, TEAM clearly outperformed all other al-
gorithms: it generated solutions with fitness values several
orders of magnitude closer to optimal than its competitors.
The differences between the final average best fitness of
the four algorithms are statistically significant. The dis-
cretization of the problem introduces many local optima,
traditionally difficult features for optimization algorithms.
Yet during later generations, TEAM’s average best fitness
continues to improve, suggesting TEAM could yield even
better solutions if evolution continued beyond 50,000 gen-
erations.

Both of TEAM’s chromosome replacement policies were

tried on this problem as well. Interestingly, the alternative
replace worst contributor policy caused TEAM’s popula-
tion to often converge to suboptimal solutions. The more
common replace worst fitness policy (shown) performed
significantly better, allowing TEAM to consistently find
good solutions.

How does TEAM achieve such a strong performance on
this problem? To illustrate, recall that the order in which
genes are bound during chromosome creation is deter-
mined by selectivity. Gene ordering therefore tells us
which genes TEAM identified as the most useful, thereby
illustrating its progress toward solution. Figure 3 shows
such a histogram of the gene order. The gray scale indi-
cates a gene’s average rank during chromosome creation
over several generations. Dark coloration indicates that the
gene is among the first genes bound, and lighter coloration
indicates that the gene is bound later.

The most prominent feature of Figure 3 is the concentrated
dark bands, i.e. adjacent genes that were bound early in
the chromosome creation process. In early generations, the
two bands are localized near genes 1 and 2, at the bottom
of the histogram, and genes 33 and 34, near the middle of
the histogram. Recall that in the floating point encoding of
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Figure 2: Average Best Fitness of 100 Runs Minimizing the Rosenbrock Function Over 50,000 Generations. In this
problem with many local optima and significant deception, TEAM finds solutions several orders of magnitude better than
the other algorithms. The final fitness differences are statistically significant

� v��R��%D��8 � .
� �
� 3 � in a chromosome, these genes correspond to the most
significant bits of the � and

3
coordinates. Since the two-

dimensional Rosenbrock function has a relatively small re-
gion of near optimal solutions, this result makes sense: the
most important indicators of fitness, and thus the most im-
portant genes to initially bind, are those responsible for the
largest changes in the point

� �N� 3 � . It is important to set
those genes correctly, otherwise there is no possibility of
high fitness.

Gene 33 is identified as selective almost immediately. All
points in the domain with fitness relatively near the opti-
mal lay above the line

3 � � . A chromosome encoding a
point above this line must have gene 33 bound to allele 0,
therefore this gene is highly selective and should be bound
early. As evolution progresses and the alleles of the selec-
tive genes become nearly homogeneous in the population,
additional genes become selective. This process is visible
in Figure 3 as a widening of the two dark bands. TEAM’s
focus on these new selective genes incrementally refines
the point

� �N� 3 � .
This way, Figure 3 illustrates how TEAM solves the prob-

lem by identifying the most important genes first. Similar
processes take place in other domains where the dependen-
cies may be less obvious, giving us important insight into
the domain. To an observer, gene order can be an impor-
tant clue to identifying underlying inter-gene dependencies
in the problem.

4 DISCUSSION & FUTURE WORK

The overhead of maintaining the model and constructing
the chromosome in TEAM is considerable compared to
that of a hillclimber or a GA. However, such more intel-
ligent evolution steps are warranted if they can generate
better final solutions than other methods. In the challeng-
ing test of minimizing the Rosenbrock function, TEAM in-
deed produced solutions significantly better than the other
algorithms.

TEAM relies on the t-test, which assumes samples are nor-
mally distributed. While TEAM is effective in the two se-
lected problems, normality may be a risky assumption in
other domains. It might therefore make sense to replace the
t-test with a method that works equally well with arbitrary



Figure 3: Histogram of Gene Order for Minimization of the Rosenbrock Function Over 50,000 Generations. Dark col-
oration indicates the gene was bound early in chromosome creation, light means late. TEAM identifies and solves the most
selective genes first, thereby making consistent refinement possible.

distributions, such as the Mann-Whitney U test (Menden-
hall & Beaver, 1994). Instead of scoring chromosomes
and genes based on fitness values, scores could be based
on rank within chromosome/gene sets. This way it should
be possible to apply TEAM reliably to a wide range of do-
mains.

Rank-based calculations have another advantage: they limit
the influence high-fitness chromosomes have during chro-
mosome creation. Currently, if there is a small number of
individuals with very high fitness, the new chromosome is
constructed mostly based on their genes. However, the goal
of evolution in TEAM is to produce a population that con-
verges around a few high-fitness individuals. With rank-
based calculations a larger number of chromosomes take
part in construction, thereby maximizing the amount of in-
formation considered during chromosome creation.

The model maintained by TEAM has perhaps the greatest
potential for improvement. The current model is organized
around pair-wise relationships between genes. This is an
improvement over algorithms that deal with genes in iso-
lation, but combinatorial problems are not limited to only
pair-wise dependencies. A method for identifying and ex-
ploiting � -gene relationships is needed. Instead of record-

ing gene pairs with an observed relationship to fitness val-
ues, we can record gene groups of arbitrary size. We can
already identify groups of size two, and larger groups can
be formed through expansion and combination of existing
groups as additional correlations are found. The identifica-
tion of gene groups could be run in parallel with population
evolution. It is an interesting problem in its own right, and
will be studied in detail in future work.

5 CONCLUSIONS

An advanced constructive evolutionary algorithm, TEAM,
was introduced in this paper. Using statistical analy-
sis and modeling of gene/fitness correlations, TEAM can
evolve chromosomes in domains with complex gene de-
pendencies. Experiments show that TEAM performs better
than other problem-independent combinatorial optimiza-
tion techniques on difficult problems. This result shows
that domain information can be extracted and meaningfully
applied during population evolution. Future work will fo-
cus on improved methods of information extraction and ap-
plication from limited domain sampling.
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