
 

 

Abstract 

How do people understand the meaning of 

the word small when used to describe a 

mosquito, a church, or a planet? While 

humans have a remarkable ability to form 

meanings by combining existing concepts, 

modeling this process is challenging. This 

paper addresses that challenge through 

CEREBRA (Context-dEpendent meaning 

REpresentations in the BRAin) neural 

network model. CEREBRA characterizes 

how word meanings dynamically adapt in 

the context of a sentence by decomposing 

sentence fMRI into words and words into 

embodied brain-based semantic features. It 

demonstrates that words in different 

contexts have different representations and 

the word meaning changes in a way that is 

meaningful to human subjects. 

CEREBRA’s context-based representations 

can potentially be used to make NLP 

applications more human-like. 

1 Introduction 

The properties associated with a word such as 

small vary in context-dependent ways: It is 

necessary to know what the word means, but also 

the context in which is used, and how the words 

combine in order to construct the word meaning. 

Humans have a remarkable ability to form 

meanings by combining existing concepts. 

Modeling this process is difficult (Hampton, 1997; 

Janetzko 2001; Middleton et al, 2011; Murphy, 

1988; Pecher et al., 2004; Sag et al., 2001, 

Wisniewski, 1997, 1998; Yee et al., 2016). How are 

concepts represented in the brain? How do word 

meanings change during concept combination or 

under the context of a sentence? What tools and 

approaches serve to quantify such changes?  

Significant progress has been made in 

understanding how concepts and word meanings 

are represented in the brain. In particular, the first 

two issues are addressed by the Concept Attribute 

Representation theory (CAR; Binder et al., 2009, 

2011, 2016a, 2016b). CAR theory represents 

concepts as a set of features that constitute the basic 

components of meaning in terms of known brain 

systems. It relates semantic content to systematic 

modulation in neuroimaging activity (fMRI 

patterns). It suggests that word meanings are 

instantiated by the weights given to different 

feature dimensions according to the context. The 

third issue is addressed by the CEREBRA or 

Context-dependent mEaning REpresentation in the 

BRAin neural network model (Aguirre-Celis & 

Miikkulainen, 2017, 2018, 2019, 2020a, 2020b). It 

is based on the CAR theory to characterize how the 

attribute weighting changes across contexts.  

In this paper the CAR theory is first reviewed. 

Then, the CEREBRA model is introduced, 

followed by the data that provides the basis for the 

model. Later, experimental results are presented, 

showing an individual example on the concept 

combination effect on word meanings, how this 

effect applies to the entire corpus, and a behavioral 

analysis to evaluate the neural network model.  

2 The CAR Theory 

CARs (a.k.a. The Experiential attribute 

representation model), represent the basic 

components of meaning defined in terms of neural 

processes and brain systems. They are composed 

of a list of well-known modalities that correspond 

to specialized sensory, motor and affective brain 

processes, systems processing spatial, temporal, 

and casual information, and areas involved in 

social cognition. (Anderson et al., 2016, 2017, 
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2018, 2019; Binder et al. 2016a). It is supported by 

substantial evidence on how humans acquire and 

learn concepts (Binder et al., 2009, 2011, 2016a, 

2016b). The central axiom of this theory is that 

concept knowledge is built from experience, as a 

result, knowledge representation in the brain is 

dynamic.  

The features are weighted according to 

statistical regularities. The semantic content of a 

given concept is estimated from ratings provided 

by human participants. For example, concepts 

referring to things that make sounds (e.g., 

explosion, thunder) receive high ratings on a 

feature representing auditory experience, relative 

to things that do not make a sound (e.g., milk, 

flower).  

Each word is modeled as a collection of 66 

features that captures the strength of association 

between each neural attribute and word meaning. 

Specifically, the degree of activation of each 

attribute associated with the concept can be 

modified depending on the linguistic context, or 

combination of words in which the concept occurs. 

More detailed account of the attribute selection and 

definition is given by Binder, et al. (2009, 2011, 

2016a, and 2016b). 

Figure 1, shows an example of the weighted 

CARs for the concept church. The weight values 

represent average human ratings for each feature. 

Given that church is an object, it has low 

weightings on animate attributes such as Face, 

Body, and Speech, and high weighting on attributes 

like Vision, Size, Shape, and Weight. However, 

since it is a building and a place for worship, it does 

include strong weightings for Sound and Music,  

spatial attributes such as Landmark and Scene, 

event attributes like Social, Time and Duration, as 

well as others such as Communication and Benefit. 

3 The CEREBRA Model 

Building on the idea of grounded word 

representation in CAR theory, this work aims to 

understand how word meanings change depending 

on context. The following sections describe the 

computational model that characterizes such 

representations. The specific terms to the 

CEREBRA model are denoted by abbreviations 

throughout the paper (e.g., CARWord, fMRISent, 

SynthWord). For reference, they are described in 

Figure 2. 

3.1 System Design 

The overall design of CEREBRA is shown in 

Figure 3. It is a neural network model that performs 

two main tasks: Prediction and Interpretation. 

During the Prediction task, the model form a 

predicted fMRI for each sentence without the 

context effects. Each sentence is thus compared 

against the observed fMRI sentence to calculate an  

 

Figure 1: Bar plot of the 66 semantic features for the 

word church (Binder et al., 2009, 2011, 2016a). 

Given that church is an object, it has low weightings 

on animate attributes such as Face, Body, and Speech, 

and high weighting on attributes like Vision, Shape, 

and Weight. However, since it is a building for 

worship, it does include stronger weightings for 

spatial attributes such as Landmark and Scene, event 

attributes like Social, Time and Duration, as well as 

others such as Communication and Benefit. CAR 

weighted features for the word church. 

 

 

Figure 2: Terminology for the abbreviated terms used 

in the CEREBRA model. 
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Figure 3: The CEREBRA model to account for context effects. (1) Propagate CARWords to SynthWords. (2) 

Construct SynthSent by averaging the SynthWords into a prediction of the sentence. (3) Compare SynthSent 

with the observed fMRI. (4) Backpropagate the error with FGREP for each sentence, freezing network weights 

and changing only CARWords. (5) Repeat until error reaches zero or CAR components reach their upper or 

lower limits. The  modified CARs represent the word meanings in context. Thus, CEREBRA captures context 

effects by mapping brain-based semantic representations to fMRI sentence images. 

error signal. This error signal is used repeatedly by 

the Interpretation task. During the Interpretation 

task, the model is used to determine how the CARs 

should adjust to eliminate the remaining error. The 

error is used to change the CARs themselves using 

the FGREP mechanism (Forming Global 

Representations with Extended BP, Miikkulainen 

& Dyer, 1991). The process iterates until the error 

goes to zero. 

3.2 Mapping CARs to Synthetic Words 

The CEREBRA model is first trained to map the 

CARWord representations in each sentence to 

SynthWords (The “forward” side of Figure 3). It 

uses a standard three-layer backpropagation neural 

network (BPNN). Gradient descent is performed 

for each word, changing the connection weights of 

the network to learn this task (Rumelharth, et al., 

1986). 

The BPNN was trained for each of the eleven 

fMRI subjects for a total of 20 repetitions each, 

using different random seeds. Complete training 

thus yields 20 different networks for each subject, 

resulting in 20 sets of 786 predicted SynthWord 

representations, that is, one word representation for 

each sentence where the word appears. 

3.3 Sentence Prediction to Change CARs 

For the Prediction task, the sentences are 

assembled using the predicted SynthWords by 

averaging all the words that occur in the sentence, 

yielding the prediction sentence called SynthSent. 

For the Interpretation task, in addition to the 

construction of the predicted sentence, further 

steps are required. First, the prediction error is 

calculated by subtracting the newly constructed 

predicted SynthSent from the original fMRISent. 

Then, the error is backpropagated to the inputs 

CARWords for each sentence (The “backward” 

side of Figure 3). However, following the FGREP 

method the weights of the network no longer 

change. Instead, the error is used to adjust the 

CARWords in order for the prediction to become 

accurate. 

This process is performed until the prediction 

error is very small (near zero) or cannot be 

modified (CARWords already met their limits, i.e., 

0 or 1), which is possible since FGREP is run 

separately for each sentence. These steps are 

repeated 20 times for each subject. At the end, the 

average of the 20 representations is used to 

represent each of the 786 context-based words 

(CARWord Revised), for each subject. 

(w'1+w'2+w'3)/3

SynthSent

W2:builtW1:engineer W3:computer W2:built W3:computer

forward backward

SynthSent
(Revised)

CARWord

W1:engineer

(w'1+w'2+w'3)/3

W’2:SynthWordW'1:SynthWord W’3:SynthWord W’2:SynthWordW'1:SynthWord W’3:SynthWord

?
ɛ=error

fMRISent

CARWord Revised
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Eventually, the Revised CARWord represents the 

word meaning for the current sentence such that, 

when combined with other Revised CARWords in 

the sentence, the estimate of sentence fMRI 

becomes correct. 

4 Data Collection and Processing 

The CEREBRA model is based on the following 

sets of data: A sentence collection prepared by 

Glasgow et al. (2016), the semantic vectors (CAR 

ratings) for the words obtained via Mechanical 

Turk, and the fMRI images for the sentences, 

collected by the Medical College of Wisconsin 

(Anderson et al., 2016, 2017, 2018, 2019; Binder 

et al., 2016a, 2016b). Additionally, fMRI 

representations for individual words (called 

SynthWord) were synthesized by averaging the 

sentence fMRI. 

4.1 Sentence Collection  

A total of 240 sentences were composed of two to 

five content words from a set of 242 words (141 

nouns, 39 adjectives and 62 verbs). The words 

were selected toward imaginable and concrete 

objects, actions, settings, roles, state and 

emotions, and events. Examples of words include 

doctor, car, hospital, yellow, flood, damaged, 

drank, accident, summer, chicken, and family. An 

example of a sentence containing some of these 

words is The accident damaged the yellow car. 

4.2 Semantic Word Vectors 

In a separate study Binder et al. (2016a, 2016b) 

collected CAR ratings for the original 242 words 

through Amazon Mechanical Turk. In a scale of 

0-6, the participants were asked to assign the 

degree to which a given concept is associated with 

a specific type of neural component of experience 

(e.g. “To what degree do you think of a church as 

having a fixed location, as on a map?”).  

Approximately 30 ratings were collected for 

each word. After averaging all ratings and 

removing outliers, the final attributes were 

transformed to unit length yielding a 66-

dimensional feature vector such as the one shown 

in Figure 1 for the word church. Note that this 

semantic feature approach builds its vector 

representations by mapping the conceptual content 

of a word (expressed in the questions) to the 

corresponding neural systems for which the CAR 

dimensions stand. This approach thus contrasts 

with systems where the features are extracted from 

text corpora and word co-occurrence with no direct 

association to perceptual grounding (Baroni et. al., 

2010; Burgess, 1998; Harris, 1970; Landauer & 

Dumais, 1997; Mikolov et al., 2013). 

4.3 Neural fMRI Sentence Representations 

If indeed word meaning changes depending on 

context, it should be possible to see such changes 

by directly observing brain activity during word 

and sentence comprehension. Binder and his team 

collected twelve repetitions of brain imaging data 

from eleven subjects by recording visual, sensory, 

motor, affective, and other brain systems.  

To obtain the neural correlates of the 240 

sentences, subjects viewed each sentence on a 

computer screen while in the fMRI scanner. The 

fMRI patterns were acquired with a whole-body 

Three-Tesla GE 750 scanner at the Center for 

Imaging Research of the Medical College of 

Wisconsin (Anderson, et al., 2016). The sentences 

were presented word-by-word using a rapid serial 

visual presentation paradigm, with each content 

word exposed for 400ms followed by a 200ms 

inter-stimulus interval. Participants were instructed 

to read the sentences and think about their overall 

meaning. 

The fMRI data were pre-processed using 

standard methods. The transformed brain 

activation patterns were converted into a single-

sentence fMRI representation per participant by 

taking the voxel-wise mean of all repetitions 

(Anderson et al., 2016; Binder et al., 2016a, 

2016b). To form the target for the neural network, 

the most significant 396 voxels per sentence were 

then chosen. The size selection mimics six case-

role slots of content words consisting of 66 

attributes each. The voxels were further scaled to 

[0.2..0.8].  

4.4 Synthetic fMRI Word Representations 

The Mapping CARs task in CEREBRA (described 

in Section 3.2) requires fMRI images for words in 

isolation. Unfortunately, the collected neural data 

set does not include such images. Therefore, a 

technique developed by Anderson et al. (2016) was 

adopted to approximate them. The voxel values for 

a word were obtained by averaging all fMRI 

images for the sentences where the word occurs. 

These vectors, called SynthWords, encode a 

combination of examples of that word along with 

other words that appear in the same sentence. Thus,



 

 

 

the SynthWord representation for mouse obtained 

from Sentence 56:The mouse ran into the forest 

and Sentence 60:The man saw the dead mouse 

includes aspects of running, forest, man, seeing, 

and dead, altogether. This process of combining 

contextual information is similar to several 

semantic models in  computational linguistics 

(Baroni et al., 2010; Burgess, 1998; Landauer et al., 

1997; Mitchell & Lapata, 2010). Additionally, in 

other studies, this approach has been used 

successfully to predict brain activation (Anderson 

et al., 2016, 2017, 2018, 2019; Binder, et al., 2016a, 

2016b; Just, et al., 2017).  

Due to the limited number of sentences, some of 

SynthWords became identical and were excluded 

from the dataset. The final collection includes 237 

sentences and 236 words (138 nouns, 38 adjectives 

and 60 verbs). Similarly, due to noise inherent in 

the neural data, only eight subject fMRI patterns 

were used for this study. 

5 Experiments 

CEREBRA’s context-based representations were 

evaluated through several computational 

experiments as well as through a behavioral 

analysis. The computational experiments quantify 

how the CAR representation of a word changes in 

different sentences for individual cases by 

correlating these changes to the CAR 

representations of the other words in the sentence 

(OWS). The behavioral study evaluates the 

CEREBRA context-based representations against 

human judgements. 

5.1 Analysis of an Individual Example 

Earlier work showed that (1) words in different 

contexts have different representations, and (2) 

these differences are determined by context. These 

effects were demonstrated by analyzing individual 

sentence cases across multiple fMRI subjects 

(Aguirre-Celis & Miikkulainen, 2017, 2018).  

Particularly, in this example the attributes of the 

adjective-noun combinations are analyzed on the 

centrality effect for the word small, as expressed in 

Sentence 42: The teacher broke the small camera, 

and Sentence 58: The army built the small hospital. 

Centrality expresses the idea that some attributes 

are true to many different concepts but they are 

more important to some concepts than others 

(Medin & Shoben, 1988). For example, it is more 

important for boomerangs to be curved than for 

bananas. 

Figure 4 shows the differences for small in these 

two contexts. The left side displays all 66 attributes 

for the two sentence representations averaged 

across subjects, and the right side displays the 

context-based representations averaged across all 

subjects for camera and hospital.  

The size dimensions (e.g., Small and Large), 

demonstrated the centrality principle for these 

specific contexts. The left side of Figure 4 shows 

Sentence 42 (e.g., small camera) with salient 

activation for the central attribute Small and low  

  

                    (a) Averaged sentences across subjects                                         (b) Averaged concepts across subjects 

Figure 4: The effect of centrality on two contexts for the word small. (a) The average for all subjects for the two 

sentences. (b) The new camera and hospital representations averaged for all subjects. In the left side of the figure, the 

new CARs for Sentence 42 have salient activations for an object, denoting the camera properties like Dark, Small, 

Manipulation, Head, Upper Limb, Communication, and emotions such as Sad (e.g., broke the camera). The new 
CARs for Sentence 58, has high feature activations for large buildings describing a Large, and Heavy structure such 

as a hospital. In the right side of the figure, for each word the central attributes are highlighted to emphasize how 

same dimensions are more important to some concepts than others. The centrality effect correlation analysis (Medin 

& Shoben, 1988). 
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activation for the non-central attribute Large. In 

contrast, Sentence 57 (e.g., small hospital) presents 

low activation on the non-central attribute Small 

but high activation  on the central attribute Large. 

These findings suggest that these attributes are 

essential to small objects and big structures, 

respectively. However, the size dimension alone 

cannot represent the centrality effect completely. 

Additionally, given that both camera and 

hospital are inanimate objects, the right side of 

Figure 4 shows that they share low weightings on  

human-related attributes like Biomotion, Face, 

Body, and Speech. However, they also differ in 

expected ways, including salient activations on 

Darkness, Color, Small and Large size, and 

Weight. As part of the sentence context, the 

activations include human-like attributes such as 

Social, Human, Communication, Pleasant, Happy, 

Sad and Fearful. Overall, each sentence 

representation moves towards their respective 

sentence context (e.g., camera or hospital).  

5.2 Aggregation Analysis 

Further work verified the above conclusions in the 

aggregate through a statistical analysis across an 

entire corpus of sentences. The goal was to 

measure how the CARs of a word changes in 

different sentences, and to correlate these changes 

to the CARs of the other words in the sentence 

(OWS). In other words, the conceptual 

combination effect was quantified statistically 

across sentences and subjects (Aguirre-Celis & 

Miikkulainen, 2019, 2020b). 

The hypothesis is based on the idea that similar 

sentences have a similar effect, and this effect is 

consistent across all words in the sentence. In order 

to test this hypothesis it is necessary to (1) form 

clusters of similar sentences for the entire 

collection, and (2) calculate the average changes on 

the words identified by the role they play for the 

same cluster of sentences. Through correlations, it 

is possible to demonstrate how similar sentences 

cause analogous changes in words that play 

identical roles in those sentences. 

The results are shown in Figure 5. The 

correlations are significantly higher for new CARs 

than for the original CARs across all subjects and 

all roles. Furthermore, the AGENT role represents 

a large part of the context in both analyses (i.e., 

modified and original CARs). Thus, the results 

confirm that the conceptual combination effect 

occurs reliably across subjects and sentences, and 

it is possible to quantify it by analyzing the fMRI 

images using the CEREBRA model on CARs. As 

a summary, the average correlation was 0.3201 

(stdev 0.020) for original CAR representations and 

0.3918 (stdev 0.034) for new CAR representations. 

Thus, this process demonstrated that changes in 

a target word CAR originate from the OWS. For 

instance, if the OWS have high values in the CAR  

 

Figure 5: Correlation results per subject cluster and word roles. Average correlations analyzed by word class for eight 

subjects comparing original and new CARs vs. the average of the OWS respectively. A moderate to strong positive 

correlation was found between new CARs and the OWS, suggesting that features of one word are transferred to OWS 

during conceptual combination. Interestingly, the original and new patterns are most similar in the AGENT panel, 
suggesting that this role encodes much of the context.  The results show that the effect occurs consistently across 

subjects and sentences. 
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HUMAN RESPONSES        PARTICIPANTS AVERAGE AGREEMENT 

      DISTRIBUTION RATINGS HUMAN CEREBRA CHANCE

Resp/Part P1 P2 P3 P4 AVG % -1 618 463 8

-1 2065 995 645 1185 1223 34.0% 0 456 3 0

0 149 1120 1895 1270 1109 30.8% 1 892 587 886

1 1386 1485 1060 1145 1269 35.3% TOTAL 1966 1053 894

TOT 3600 3600 3600 3600 3600 100%                   AVERAGE 54% 45%

        PARTICIPANT (b) Matching Predictions

AGREEMENT ANALYSIS 
P1 P2 P3 P4 AVERAGE % SUBJECTS CEREBRA CHANCE p-value

P1 0 1726 1308 1650 1561 43% MEAN VAR MEAN VAR

P2 1726 0 1944 1758 1809 50% S5051 1033 707.25 894 6.01 3.92E-24

P3 1308 1944 0 1741 1664 46% S9322 1035 233.91 894 7.21 6.10E-33

P4 1650 1758 1741 0 1716 48% S9362 1063 224.41 894 11.52 5.22E-36

S9655 1077 94.79 894 7.21 3.89E-44

TOTAL 6751 S9701 1048 252.79 895 12.03 1.83E-33

AVG xPART 1688 S9726 1048 205.82 894 4.62 1.73E-35

S9742 1075 216.77 895 7.21 1.65E-37

AVERAGE   Particip match each other 47% S9780 1039 366.06 894 2.52 6.10E-30

      (a) Human Responses (c) Statistical Significance  

Table 1: Comparing CEREBRA predictions with human judgements. (a) Distribution analysis and inter-rater 

agreement. The top table shows human judgement distribution for the three responses “less” (-1), “neutral” (0), 

and “more” (1). The bottom table shows percentage agreement for the four participants. Humans agree 47% of 

the time. (b) Matching CEREBRA predictions with human data, compared to chance baseline. The table shows 

the average agreement of the 20 repetitions across all subjects. CEREBRA agrees with human responses 54% 

while baseline is 45% - which is equivalent to always guessing “more”, i.e., the largest category of human 

responses. (c) Statistical analysis for CEREBRA and baseline. The table shows the means and variances of 

CEREBRA and chance models for each subject and the p-values of the t-test, showing that the differences are 

highly significant. Thus, the context-dependent changes are actionable knowledge that can be used to predict 

human judgements. 

 
 

spatial dimension for Path, then that dimension in 

the modified CAR should be higher than in the 

original CAR, for such target word. The 

CEREBRA model encodes this effect into the 

CARs where it can be measured.  

5.3 Behavioral Study 

While Sections 5.1 and 5.2 showed that 

differences in the fMRI patterns in sentence 

reading can be explained by context-dependent 

changes in the semantic feature representations of 

the words. The goal of this section is to show that 

these changes are meaningful to humans. 

Therefore, human judgements were compared 

against CEREBRA predictions (Aguirre-Celis & 

Miikkulainen, 2020a, 2020b). 
 

Measuring Human Judgements: A survey was 

designed to characterize context-dependent 

changes by asking the subject directly: In this 

context, how does this attribute change? Human 

judgements were crowdsourced using Google 

Forms. The complete survey was an array of 24 

questionnaires that included 15 sentences each. For 

each sentence, the survey measured 10 attribute 

changes for each target word. Only the top 10 

statistically most significant attribute changes for 

each target words (roles) were used. Overall, each 

questionnaire thus contained 150 evaluations. The 

24 questionnaires can be found at: 
https://drive.google.com/drive/folders/1jD

CqKMuH-SyTxcJ7oJRbr7mYV6WNNEWH?usp=sharing 

Human responses were first characterized 

through data distribution analysis. Table 1 (a) 

shows the number of answers “less” (-1), “neutral” 

(0), and “more” (1) for each participant. Columns 

labeled P1, P2, P3, and P4 show the answers of the 

participants. The top part of Table 1 (a) shows the 

distribution of the raters’ responses and the bottom 

part shows the level of agreement among them. As 

can be seen from the table, the participants agreed 

only 47% of the time. Since the inter-rater 

reliability is too low, only questions that were the 

most reliable were included, i.e., where three out of 

four participants agreed. There were 1966 such 

questions, or 55% of the total set of questions.  

 

Measuring CEREBRA’s Predictions: The 

survey directly asks for the direction of change of 

a specific word attribute in a particular sentence, 

compared to the word’s generic meaning. Since the 

changes in the CEREBRA model range within 

(-1,1), in principle that is exactly what the model 

produces. However, during the experiments it was 

found that some word attributes always increase, 

and do so more in some contexts than others. This 

https://drive.google.com/drive/folders/1jDCqKMuH-SyTxcJ7oJRbr7mYV6WNNEWH?usp=sharing
https://drive.google.com/drive/folders/1jDCqKMuH-SyTxcJ7oJRbr7mYV6WNNEWH?usp=sharing


 

 

 

effect is well known in conceptual combination 

(Hampton, 1997; Wisniewsky, 1998), contextual 

modulation (Barclay, 1974, Barsalou et al., 1987, 

1993), and attribute centrality (Medin & Shoben, 

1988). The direction of change is therefore not a 

good predictor of human responses.  

These changes need to be measured relative to 

changes in the OWS. Thus, the approach was based 

on asking: What is the effect of CARs used in 

context as opposed to CARs used in isolation? This 

effect was measured by computing the average of 

the CEREBRA changes (i.e., new minus original) 

of the different representations of the same word in 

several contexts, and subtracting that average 

change from the change of the target word. 

 

Matching CEREBRA’s Predictions with 

Human Judgements: In order to demonstrate that 

the CEREBRA model has captured human 

performance, the agreements of the CEREBRA 

changes and human surveys need to be at least 

above chance. Therefore a baseline model that 

generated random responses from the distribution 

of human responses was created. The results are 

reported in Table 1 (b), and the statistical 

significance of the comparisons in Table 1 (c). 

The CEREBRA model matches human 

responses in 54% of the questions when the 

baseline is 45% - which is equivalent to always 

guessing “more”, i.e., the largest category of 

human responses. The differences shown in  Table 

1 (c) are highly statistically significant for the eight 

subjects. These results show that the changes in 

word meanings (i.e., due to sentence context 

observed in the fMRI and interpreted by 

CEREBRA) are real and meaningful to humans 

(Aguirre-Celis & Miikkulainen, 2020a, 2020b).  

6 Discussion and Future Work 

This paper described how the CAR theory, the 

fMRI images, and the CEREBRA model form the 

groundwork to characterize dynamic word 

meanings. The CEREBRA model generates good 

interpretations of word meanings considering that 

the dataset was limited and was not originally 

designed to address the dynamic effects in 

meaning. In future work, it would be interesting to 

replicate the studies on a more extensive data set. 

A fully balanced stimuli including sentences with 

identical contexts (e.g., The yellow bird flew over 

the field vs. The yellow plane flew over the field) 

and contrasting contexts (e.g., The aggressive dog 

chased the boy vs. The friendly dog chased the 

boy), could help characterize the effects in more 

detail. The context-based changes should be even 

stronger, and it should be possible to uncover more 

refined effects. Such data should also improve the 

survey design, since it would be possible to 

identify questions where the effects can be 

expected to be more reliable. 

Similarly, it would be desirable to extend the 

fMRI data with images for individual words. The 

CEREBRA process of mapping semantic CARs to 

SynthWords and further to sentence fMRI refines 

the synthetic representations by removing noise. 

However, such representations blend together the 

meanings of many words in many sentences. Thus, 

by acquiring actual word fMRI, the observed 

effects should become even more clear. 

One disadvantage on CEREBRA is that it is 

expensive to collect fMRI patterns and human 

ratings at a massive scale compared to running a 

statistical algorithm on a data repository. 

Furthermore, any changes to the model (e.g., 

adding features) would require new data to be 

collected. On the other hand, such data provides a 

grounding to neural processes and behavior that 

does not exist with statistical approaches. 

Concept representation in the CAR approach 

can be compared to other methods such as 

Conceptual Spaces (CS; Gardenfors, 2004; 

Bechberger & Kuhnberger, 2019), and 

distributional semantic models (DSMs; Anderson 

et. al., 2013; Bruni et al., 2014; Burgess, 1998; 

Landauer & Dumais, 1997; Mikolov et al., 2013; 

Mitchell & Lapata, 2010; Silberer & Lapata, 

2014). The CAR theory and CS characterize 

concepts with a list of features or dimensions as the 

building blocks. The CAR theory provides a set of 

primitive features for the analysis of conceptual 

content in terms of neural processes (grounded in 

perception and action). The CS framework 

suggests a set of “quality” dimensions as relations 

that represent cognitive similarities between 

stimuli (observations or instances of concepts). CS 

is also considered a grounding mechanism that 

connects abstract symbols to the real world. The 

CAR and CS approaches include similar 

dimensions (i.e., weight, temperature, brightness) 

and some of those dimensions are part of a larger 

domain (e.g., color) or a process (e.g., visual 

system). Whereas CAR theory is a brain-based 

semantic representation where people weigh 

concept dimensions differently based in context, 



 

 

 

DSMs are not grounded on perception and motor 

mechanisms. Instead, DSM representations reflect 

semantic knowledge acquired through a lifetime of 

linguistic experience based on statistical co-

occurrence. DSMs do not provide precise 

information about the experienced features of the 

concept itself (Anderson et al., 2016). In 

CEREBRA, this grounding provides a multimodal 

approach where features directly relate semantic 

content to neural activity. 

7 Conclusions  

The CEREBRA model was constructed to test the 

hypothesis that word meanings change 

dynamically based on context. The results suggest 

three significant conclusions: (1) context-

dependent meaning representations are embedded 

in the fMRI sentences, (2) they can be 

characterized using CARs together with the 

CEREBRA model, and (3) the attribute weighting 

changes are real and meaningful to human 

subjects. Thus, CEREBRA opens the door for 

cognitive scientists to achieve better understanding 

and form new hypotheses about how semantic 

knowledge is represented in the brain. 

Additionally, the context-based representations 

produced by the model could be used for a broad 

range of artificial natural language processing 

systems, where grounding concepts as well as 

understanding novel combinations of concepts is 

critical. 

Acknowledgments 

We would like to thank J. Binder (Wisconsin), R. 

Raizada and A. Anderson (Rochester), M. Aguilar 

and P. Connolly (Teledyne) for providing this data 

and for their valuable help regarding this research. 

This work was supported in part by IARPA-

FA8650-14-C-7357 and by NIH 1U01DC014922 

grants. 

References  

Nora Aguirre-Celis & Risto Miikkulainen. (2017). 

From Words to Sentences & Back: Characterizing 

Context-dependent Meaning Representations in the 

Brain. Proceedings of the 39th Annual Meeting of 

the Cognitive Science Society, London, UK, pp. 

1513-1518.  

Nora Aguirre-Celis & Risto Miikkulainen. (2018) 

Combining fMRI Data and Neural Networks to 

Quantify Contextual Effects in the Brain. In: Wang 

S. et al. (Eds.). Brain Informatics. BI 2018. Lecture 

Notes in Computer Science. 11309, pp. 129-140. 

Springer, Cham. 

Nora Aguirre-Celis & Risto Miikkulainen. (2019). 

Quantifying the Conceptual Combination Effect on 

Words Meanings. Proceedings of the 41th Annual 

Conference of the Cognitive Science Society, 

Montreal, CA. 1324-1331. 

Nora Aguirre-Celis & Risto Miikkulainen. (2020a). 

Characterizing the Effect of Sentence Context on 

Word Meanings: Mapping Brain to Behavior. 

Computation and Language. arXiv:2007.13840. 

Nora Aguirre-Celis & Risto Miikkulainen. (2020b). 

Characterizing Dynamic Word Meaning 

Representations in the Brain. In Proceedings of the 

6th Workshop on Cognitive Aspects of the Lexicon 

(CogALex-VI), Barcelona, ES, December 2020. 

Andrew J. Anderson, Elia Bruni, Ulisse Bordignon, 

Massimo Poesio, and Marco Baroni. 2013. Of 

words, eyes and brains: Correlating image-based 

distributional semantic models with neural 

representations of concepts. Proceedings of the 

Conference on Empirical Methods in Natural 

Language Processing (EMNLP 2013); Seattle, 

WA: Association for Computational Linguistics. 

pp. 1960–1970. 

Andrew J. Anderson, Jeffrey R. Binder, Leonardo 

Fernandino, Colin J. Humphries, Lisa L. Conant, 

Mario Aguilar, Xixi Wang, Donias Doko, Rajeev D 

S Raizada. 2016. Perdicting Neural activity patterns 

associated with sentences using neurobiologically 

motivated model of semantic representation. 

Cerebral Cortex, pp. 1-17. 

DOI:10.1093/cercor/bhw240 

Andrew J. Anderson, Douwe Kiela, Stephen Clark, 

and Massimo Poesio. 2017. Visually Grounded and 

Textual Semantic Models Differentially Decode 

Brain Activity Associated with Concrete and 

Abstract Nouns. Transaction of the Association for 

Computational Linguistics 5: 17-30. 

Andrew J. Anderson, Edmund C. Lalor, Feng Lin, 

Jeffrey R. Binder, Leonardo Fernandino, Colin J. 

Humphries, Lisa L. Conant, Rajeev D.S. Raizada, 

Scott Grimm, and Xixi Wang. 2018. Multiple 

Regions of a Cortical Network Commonly Encode 

the Meaning of Words in Multiple Grammatical 

Positions of Read Sentences. Cerebral Cortex, pp. 

1-16. DOI:10.1093/cercor/bhy110. 

Andrew J. Anderson, Jeffrey R. Binder, Leonardo 

Fernandino, Colin J. Humphries, Lisa L. Conant, 

Rajeev D.S. Raizada, Feng Lin, and Edmund C. 

Lalor. 2019. An integrated neural decoder of 

linguistic and experiential meaning. The Journal of 

neuroscience: the official journal of the Society for 

Neuroscience. 

Richard Barclay, John D. Bransford, Jeffery J. Franks, 

Nancy S. McCarrell, & Kathy Nitsch. 1974. 



 

 

 

Comprehension and semantic flexibility. Journal of 

Verbal Learning and Verbal Behavior, 13:471–481. 

Marco Baroni, Brian Murphy, Eduard Barbu, and 

Massimo Poesio. 2010. Strudel: A Corpus-Based 

Semantic Model Based on Properties and Types. 

Cognitive Science, 34(2):222-254. 

Lawrence W. Barsalou. 1987. The instability of graded 

structure: Implications for the nature of concepts. In 

U. Neisser (Ed.), Concepts and conceptual 

development: Ecological and intellectual factors in 

categorization. Cambridge, England: Cambridge 

University Press. 

Lawrence W. Barsalou, Wenchi Yeh, Barbara J. Luka, 

Karen L. Olseth, Kelly S. Mix, Ling-Ling Wu. 

1993. Concepts and Meaning. Chicago Linguistic 

Society 29: Papers From the Parasession on 

Conceptual Representations, 23-61. University of 

Chicago. 

Lucas Bechberger, Kai-Uwe Kuhnberger. 2019. A 

Thorough Formalization of Conceptual Spaces. In: 

Kern-Isberner, G., Furnkranz, J., Thimm, M. (eds.) 

KI 2017: Advances in Artificial Intelligence: 40th 

Annual German Conference on AI, Dortmund, 

Germany. 

Jeffrey R. Binder and Rutvik H. Desai, William W. 

Graves, Lisa L. Conant. 2009. Where is the 

semantic system? A critical review of 120 

neuroimaging studies. Cerebral Cortex, 19:2767-

2769.  

Jeffrey R. Binder and Rutvik H. Desai. 2011. The 

neurobiology of semantic memory. Trends 

Cognitive Sciences, 15(11):527-536.  

Jeffrey R. Binder. 2016a. In defense of abstract 

conceptual representations. Psychonomic Bulletin 

& Review, 23. doi:10.3758/s13423-015-0909-1 

Jeffrey R. Binder, Lisa L. Conant, Colin J. Humpries, 

Leonardo Fernandino, Stephen B. Simons, Mario 

Aguilar, Rutvik H. Desai. 2016b. Toward a brain-

based Componential Semantic Representation. 

Cognitive Neuropsychology, 33(3-4):130-174. 

Elia Bruni, Nam Khanh Tran, Marco Baroni. 2014. 

Multimodal distributional semantics. Journal of 

Artificial Intelligence Research (JAIR), 49:1-47. 

Curt Burgess. 1998. From simple associations to the 

building blocks of language: Modeling meaning 

with HAL. Behavior Research Methods, 

Instruments, & Computers, 30:188–198. 

Peter Gardenfors. 2004. Conceptual spaces: The 

geometry of thought, The MIT Press. 

Kimberly Glasgow, Matthew Roos, Amy J. Haufler, 

Mark Chevillet, Michael Wolmetz. 2016. 

Evaluating semantic models with word-sentence 

relatedness. Computing Research Repository, 

arXiv:1603.07253. 

James Hampton. 1997. Conceptual combination. In K. 

Lamberts & D. R. Shanks (Eds.), Studies in 

cognition. Knowledge, concepts and categories, 

133–159. MIT Press. 

Zellig Harris. 1970. Distributional Structure. In Papers 

in Structure and Transformational Linguistics, 775-

794. 

Dietmar Janetzko. 2001. Conceptual Combination as 

Theory Formation. Proceedings of the Annual 

Meeting of the Cognitive Science Society, 23. 

Marcel A. Just, Jing Wang, Vladimir L. Cherkassky. 

2017. Neural representations of the concepts in 

simple sentences: concept activation prediction and 

context effect. Neuroimage, 157:511–520. 

Thomas K. Landauer and Susan T. Dumais. 1997. A 

solution to Plato’s problem: The latent semantic 

analysis theory. Psychological Review, 104:211-

240.  

Douglas L. Medin and Edward J. Shoben. 1988. 

Context and structure in conceptual combination. 

Cognitive Psychology, 20:158-190. 

Erica L. Middleton, Katherine A. Rawson, and Edward 

J. Wisniewski. 2011. "How do we process novel 

conceptual combinations in context?". Quarterly 

Journal of Experimental Psychology. 64 (4): 807–

822. 

Risto Miikkulainen and Michael Dyer. 1991. Natural 

Language Processing with Modular PDP Networks 

and Distributed Lexicon. Cognitive Science, 15: 

343-399.  

Thomas Mikolov, Ilya Sutskever, Kai Chen, Greg 

Corrado, and Jeffrey Dean. 2013. Distributed 

representations of words and phrases and their 

compositionality. Advances in neural information 

processing systems, 3111–3119. 

Jeff Mitchell and Mirella Lapata. 2010. Composition 

in distributional models of semantics. Cognitive 

Science, 38(8):1388–1439. DOI: 10.1111/j.1551-

6709.2010.01106.x 

Gregory Murphy. 1988. Comprehending complex 

concepts. Cognitive Science, 12: 529-562. 

Diane Pecher, Rene Zeelenberg, and Lawrence 

Barsalou. 2004. Sensorimotor simulations underlie 

conceptual representations Modality-specific 

effects of prior activation. Psychonomic Bulletin & 

Review, 11: 164-167. 

David E. Rumelhart, James L. McClelland, and PDP 

Research Group (1986) Parallel Distributed 

Processing. Explorations in the Microstructure of 

Cognition, Volume 1: Foundations. Cambridge, 

MA: MIT Press. 

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann 

Copestake, Dan Flickinger. 2001. Multiword 

expressions: A pain in the neck for NLP. In 



 

 

 

International conference on intelligent text 

processing and computational linguistics, 1-15. 

Springer, Berlin, Heidelberg. 

Carina Silberer and Mirella Lapata. 2014. Learning 

Grounded Meaning Representations with 

Autoencoders. Proceedings of the 52nd Annual 

Meeting of the Association for Computational 

Linguistics, 721-732. 

Edward J. Wisniewski. 1997. When concepts combine. 

Psychonomic Bulletin & Review, 4, 167–183. 

Edward J. Wisniewski. 1998. Property Instantiation in 

Conceptual Combination. Memory & Cognition, 26, 

1330-1347. 

Eiling Yee, & Sharon L. Thompson-Schill. 2016. 

Putting concepts into context. Psychonomic Bulletin 

& Review, 23, 1015–1027. 

 


	1 Introduction
	2 The CAR Theory
	3 The CEREBRA Model
	3.1 System Design
	3.2 Mapping CARs to Synthetic Words
	3.3 Sentence Prediction to Change CARs

	4 Data Collection and Processing
	4.1 Sentence Collection
	4.2 Semantic Word Vectors
	4.3 Neural fMRI Sentence Representations
	4.4 Synthetic fMRI Word Representations

	5 Experiments
	5.1 Analysis of an Individual Example
	5.2 Aggregation Analysis
	5.3 Behavioral Study

	6 Discussion and Future Work
	7 Conclusions
	Acknowledgments
	References

